The cooperative control of large-scale multi-agent systems has gained a significant interest in recent years from the robotics and control communities for multi-vehicle control. One motivator for the growing interest is the application of spatially and temporally distributed multiple unmanned aerial vehicle (UAV) systems for distributed sensing and collaborative operations. In this research, the multi-vehicle control problem is addressed using a decentralised control system. The work aims to provide a decentralised control framework that synthesises the self-organised and coordinated behaviour of natural swarming systems into cooperative UAV systems. The control system design framework is generalised for application into various other multi-agent systems including cellular robotics, ad-hoc communication networks, and modular smart-structures. The approach involves identifying suitable relationships that describe the behaviour of the UAVs within the swarm and the interactions of these behaviours to produce purposeful high-level actions for system operators. A major focus concerning the research involves the development of suitable analytical tools that decomposes the general swarm behaviours to the local vehicle level. The control problem is approached using two-levels of abstraction; the supervisory level, and the local vehicle level. Geometric control techniques based on differential geometry are used at the supervisory level to reduce the control problem to a small set of permutation and size invariant abstract descriptors. The abstract descriptors provide an open-loop optimal state and control trajectory for the collective swarm and are used to describe the intentions of the vehicles. Decentralised optimal control is implemented at the local vehicle level to synthesise self-organised and cooperative behaviour. A deliberative control scheme is implemented at the local vehicle level that demonstrates autonomous, cooperative and optimal behaviour whilst the preserv ing precision and reliability at the local vehicle level.
Identifer | oai:union.ndltd.org:ADTP/246529 |
Date | January 2009 |
Creators | Ilaya, Omar, o.ilaya@student.rmit.edu.au |
Publisher | RMIT University. Aerospace, Mechanical & Manufacturing Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.rmit.edu.au/help/disclaimer, Copyright Omar Ilaya |
Page generated in 0.0018 seconds