Return to search

Decentralized Coordination of Multiple Autonomous Vehicles

This dissertation focuses on the study of decentralized coordination algorithms of multiple autonomous vehicles. Here, the term decentralized coordination is used to refer to the behavior that a group of vehicles reaches the desired group behavior via local interaction. Research is conducted towards designing and analyzing distributed coordination algorithms to achieve desired group behavior in the presence of none, one, and multiple group reference states. Decentralized coordination in the absence of any group reference state is a very active research topic in the systems and controls society. We first focus on studying decentralized coordination problems for both single-integrator kinematics and double-integrator dynamics in a sampled-data setting because real systems are more appropriate to be modeled in a sampled-data setting rather than a continuous setting. Two sampled-data consensus algorithms are proposed and the conditions to guarantee consensus are presented for both fixed and switching network topologies. Because a number of coordination algorithms can be employed to guarantee coordination, it is important to study the optimal coordination problems. We further study the optimal consensus problems in both continuous-time and discrete-time settings via an linear-quadratic regulator (LQR)-based approach. Noting that fractional-order dynamics can better represent the dynamics of certain systems, especially when the systems evolve under complicated environment, the existing integer-order coordination algorithms are extended to the fractional-order case. Decentralized coordination in the presence of one group reference state is also called coordinated tracking, including both consensus tracking and swarm tracking. Consensus tracking refers to the behavior that the followers track the group reference state. Swarm tracking refers to the behavior that the followers move cohesively with the external leader while avoiding inter-vehicle collisions. In this part, consensus tracking is studied in both discrete-time setting and continuous-time settings while swarm tracking is studied in a continuous-time setting. Decentralized coordination in the presence of multiple group reference states is also called containment control, where the followers will converge to the convex hull, i.e., the minimal geometric space, formed by the group references states via local interaction. In this part, the containment control problem is studied for both single-integrator kinematics and double-integrator dynamics. In addition, experimental results are provided to validate some theoretical results.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1648
Date01 May 2010
CreatorsCao, Yongcan
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0021 seconds