The development of connected vehicle (CV) technologies enables advanced management of individual vehicles and traffic signals to improve urban mobility and energy efficiency. In this thesis, a cooperative vehicle-signal control system will be developed to integrate an Eco-driving system and a proactive signal control system under a mixed connected environment with both connected vehicles (CVs) and human-driven vehicles (HDVs). The system utilizes CVs to conduct an accurate prediction of queue length and delay at different approaches of intersections. Then, a queue-based optimal control strategy is established to minimize the fuel usage of individual CVs and the travel time delay of entire intersections. The system applies the model predictive control to search for the optimal signal timing plan for each intersection and the most-fuel efficient speed profiles for each CV to gain the global optimum of the intersection. In this thesis,
a simulation platform is designed to verify the effectiveness of the proposed system under different traffic scenarios. The comparison with the eco-driving only and signal control only algorithms verifies that the cooperative system has a much more extensive reduction range of the trip delay in the case of medium and high saturation. At low saturation, the effect of the system is not much different from that of the eco-driving algorithm, but it is still better than the signal control. Results show that the benefits of CVs are significant at all different market
penetration rates of CVs. It also demonstrates the drawback of the system at high congestion levels. / Thesis / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/28708 |
Date | January 2023 |
Creators | Haoya, Li |
Contributors | Hao, Yang, Civil Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds