Return to search

Einfluss intermetallischer Phasen der Systeme Al-Cu und Al-Ag auf den Widerstand stromtragender Verbindungen im Temperaturbereich von 90 °C bis 200 °C

Im Netz der Elektroenergieversorgung werden einzelne Netzkomponenten und Betriebsmittel durch Verbindungen elektrisch zusammengeschaltet. Dabei werden häufig Schraubenverbindungen mit Stromschienen eingesetzt. Diese müssen über mehrere Jahrzehnte zuverlässig hohe Ströme tragen können. Abhängig von der sich einstellenden Temperatur an den Verbindungen altern diese mit der Zeit. Die Alterung wird je nach Verbindungssystem von verschiedenen Mechanismen beeinflusst, die alle parallel ablaufen. Bei ruhenden, stationären elektrotechnischen Verbindungen, deren Kontaktpartner aus verschiedenen Materialien bestehen, können abhängig von der Paarung intermetallische Phasen (IMP) entstehen. Die sich bildenden IMP haben schlechtere elektrische und mechanische Eigenschaften als die reinen Metalle. Daraus resultiert ein höherer Verbindungswiderstand. Die erzeugte Verlustleistung sowie die Temperatur der Verbindung steigen an. Dies kann zum Ausfall der Verbindung führen. In der Elektroenergietechnik werden aufgrund ihrer guten elektrischen Leitfähigkeit häufig die Werkstoffe Aluminium und Kupfer sowie das Beschichtungsmetall Silber bei Temperaturen von üblicherweise 90 °C bis 200 °C eingesetzt. Speziell bei Aluminium-Kupfer-Verbindungen, die nicht langzeitstabil sind, wird als maßgebliche Ausfallursache das Bilden von IMP gesehen.

Die IMP des Systems Al-Cu wurden in der Vergangenheit bereits vielfach untersucht. Das Übertragen der Ergebnisse auf die Problematik stromtragender Verbindungen der Elektroenergietechnik ist jedoch nicht ohne Weiteres möglich. Der relevante niedrige Temperaturbereich zwischen 90 °C und 200 °C spielt bei vielen Untersuchungen nur eine untergeordnete Rolle. Zusätzlich können die Eigenschaften der IMP bei unterschiedlichen Herstellungsverfahren voneinander abweichen. Zum System Al-Ag ist in der Literatur nur wenig bekannt. Deshalb wurden für diese Arbeit phasenreine IMP der Systeme Al-Cu und Al-Ag mit unterschiedlichen Herstellungsverfahren bei möglichst identischen Randbedingungen hergestellt. Diese wurden mit einer speziell für diese Proben entwickelten Messeinrichtung elektrisch charakterisiert und der ermittelte spezifische elektrische Widerstand der IMP und ihr Temperaturbeiwert mit Werten aus der Literatur verglichen.

An verschiedenen Schraubenverbindungen mit Stromschienen aus Aluminium und Kupfer wurden Langzeitversuche von bis zu 3 Jahren durchgeführt. Der Verbindungswiderstand wurde abhängig von der Zeit ermittelt. An ausgewählten Verbindungen wurde zusätzlich in zwei identischen Versuchen der Einfluss der Belastung mit Dauer- und Wechsellast auf das Langzeitverhalten untersucht. Mithilfe der an den IMP ermittelten elektrischen Eigenschaf-ten wurde deren Einfluss auf den Verbindungswiderstand berechnet. Die Ergebnisse dieser Modellrechnung wurden mit den Ergebnissen aus den Langzeitversuchen verglichen. Ausgewählte Verbindungen wurden dazu mikroskopisch untersucht. Es wurde festgestellt, dass die IMP nicht ausschließlich das Langzeitverhalten stromtragender Verbindungen bestimmen. Es muss mindestens ein weiterer Alterungsmechanismus einen signifikanten Einfluss haben. Die Untersuchungen deuten darauf hin, dass dabei Sauerstoff eine zentrale Rolle spielen könnte. / In electrical power supply networks a huge number of electrical joints are used to connect transmission lines, conductors, switchgears and other components. During operation these joints are aging due to different aging mechanisms. Depending on the type of the joint several aging mechanisms can take place at the same time. For stationary joints with contact partners made of different materials, the formation of intermetallic compounds (IMC) may be an issue. These IMC have worse electrical and mechanical properties compared to the pure metals. Therefore, the presence of IMC in the contact area results in a higher joint re-sistance and the temperature and the thermal power losses increase. Typical temperatures for high current joints are between 90 °C and 200 °C.

Due to their good electrical conductivity aluminum and copper are often used as conductor materials and silver as a coating material. Especially bimetal joints made of aluminum and copper are not long term stable. The formation of Al-Cu IMC is held responsible as a cause of failure. The IMC of the System Al-Cu have already been studied by several authors. However, it is difficult to apply the results directly to electrical joints in power supply networks. In many studies the low temperature range between 90 °C and 200 °C is not regarded. In addition, the properties of the IMC may vary due to different preparation processes. There is only little information about the system Al-Ag in the literature.

For this work, phase pure IMC of the systems Al-Cu and Al-Ag were prepared by different preparation processes using similar process parameters. These IMC samples were electrically characterized with a specially developed measuring device. The specific electric resistivity and the temperature coefficient of resistance were determined and compared to values taken from the literature. Various combinations of bus bar joints made of aluminum and copper were investigated in long term tests for up to three years. The joint resistance was determined as a function of time.

In addition, for selected joints two identic setups were operated with continuous load and alternating load. The long term behavior was investigated with regard to the load ap-plied. Using the results of the electrical characterization of the IMC their influence on the joint resistance was calculated theoretically. The results of the calculation were compared to the results determined in the long term tests. Selected joints were examined microscopi-cally after termination of the long term tests. It was found, that the long term behavior of bimetal electrical joints with the combination Al-Cu and Al-Ag cannot be exclusively described by the growth of IMC. At least there is one further aging mechanism involved. The studies suggest, that oxygen may have a significant influence.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29871
Date26 October 2015
CreatorsPfeifer, Stephanie
ContributorsSchlegel, Stephan, Großmann, Steffen, Göbel, Gunther, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0035 seconds