Return to search

Slag Cleaning of a Reduced Iron Silicate Slag by Settling : Influence of Process Parameters and Slag Modification on Copper Content

During the pyrometallurgical extraction of copper, a significant part of the copper is lost with discard slag, which decreases profits, overall copper recovery, and efficiency of raw material usage. Smelting furnace slag usually has a copper content that is close to or higher than that of copper ores. The investigation of copper losses to slag is thus a task of practical significance, as the ore grades are depleting. Slag cleaning, e.g., a settling furnace, can reduce copper losses to slag as the mechanically suspended copper-containing droplets separate from slag under the action of gravity and can hence be recovered.  An industrial trial was conducted in an electric settling furnace with slag originating from an electric smelting furnace and processed in a zinc fuming furnace. The trial was conducted to increase the understanding of copper losses to slag and how the process parameters temperature and settling time influence the slag copper content. The obtained slag samples were also evaluated to gain better insights as to the settling mechanism and, if any, factors that hinder the copper phases from settling. Slag modification with CaO was also evaluated to investigate how the modification influences the settling of copper phases and, thus, the final slag copper content.  Samples collected during the industrial trial were the basis for the evaluation in the current work. The samples came from batches with varying temperatures, settling times, and CaO content collected at four different sample positions. Instrumental techniques, including XRF, FAAS, ICP-SFMS, and SEM-EDS, were used to analyze the chemical compositions of the samples and the appearance of copper and associated phases.  The results indicated that the copper content of outgoing slag increased with increasing temperature in the evaluated interval. The copper content was also concluded to be more strongly affected by the temperature compared to the settling time. Regulating the temperature to the lower temperature interval in the settling furnace could thus decrease the final slag copper content. During the slag characterization, it was found that suspended copper-containing phases were hindered from settling, due to the attachment to solid phases and gas bubbles in the slag. By controlling and minimizing the presence of the bottom buildup and thus solid phases in the slag, the copper content can be decreased. The results indicated that the CaO slag modification decreased the final slag copper content, and can thus be used as a modifier for increased settling.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-84798
Date January 2021
CreatorsIsaksson, Jenny
PublisherLuleå tekniska universitet, Mineralteknik och metallurgi, Luleå
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLicentiate thesis / Luleå University of Technology, 1402-1757

Page generated in 0.0027 seconds