Return to search

Thin Films of Copper Oxide and Copper Grown by Atomic Layer Deposition for Applications in Metallization Systems of Microelectronic Devices

Copper-based multi-level metallization systems in today’s ultralarge-scale integrated electronic circuits require the fabrication of diffusion barriers and conductive seed layers for the electrochemical metal deposition. Such films of only several nanometers in thickness have to be deposited void-free and conformal in patterned dielectrics.
The envisaged further reduction of the geometric dimensions of the interconnect system calls for coating techniques that circumvent the drawbacks of the well-established physical vapor deposition.
The atomic layer deposition method (ALD) allows depositing films on the nanometer scale conformally both on three-dimensional objects as well as on large-area substrates. The present work therefore is concerned with the development of an ALD process to grow copper oxide films based on the metal-organic precursor bis(tri-n-butylphosphane)copper(I)acetylacetonate [(nBu3P)2Cu(acac)]. This liquid, non-fluorinated β-diketonate is brought to react with a mixture of water vapor and oxygen at temperatures from 100 to 160°C. Typical ALD-like growth behavior arises between 100 and 130°C, depending on the respective substrate used. On tantalum nitride and silicon dioxide substrates, smooth films and self-saturating film growth, typical for ALD, are obtained. On ruthenium substrates, positive deposition results are obtained as well. However, a considerable intermixing of the ALD copper oxide with the underlying films takes place. Tantalum substrates lead to a fast self-decomposition of the copper precursor. As a consequence, isolated nuclei or larger particles are always obtained together with continuous films. The copper oxide films grown by ALD can be reduced to copper by vapor-phase processes. If formic acid is used as the reducing agent, these processes can already be carried out at similar temperatures as the ALD, so that agglomeration of the films is largely avoided.
Also for an integration with subsequent electrochemical copper deposition, the combination of ALD copper and ruthenium proves advantageous, especially with respect to the quality of the electroplated films and their filling behavior in interconnect structures. Furthermore, the ALD process developed also bears potential for an integration with carbon nanotubes. / Kupferbasierte Mehrlagenmetallisierungssysteme in heutigen hochintegrierten elektronischen Schaltkreisen erfordern die Herstellung von Diffusionsbarrieren und leitfähigen Keimschichten für die galvanische Metallabscheidung. Diese Schichten von nur wenigen Nanometern Dicke müssen konform und fehlerfrei in strukturierten Dielektrika abgeschieden werden. Die sich abzeichnende weitere Verkleinerung der geometrischen Dimensionen des Leitbahnsystems erfordert Beschichtungstechnologien, die vorhandene Nachteile der bisher etablierten Physikalischen Dampfphasenabscheidung beheben. Die Methode der Atomlagenabscheidung (ALD) ermöglicht es, Schichten im Nanometerbereich sowohl auf dreidimensional strukturierten Objekten als auch auf großflächigen Substraten gleichmäßig herzustellen.
Die vorliegende Arbeit befasst sich daher mit der Entwicklung eines ALD-Prozesses zur Abscheidung von Kupferoxidschichten, ausgehend von der metallorganischen Vorstufe Bis(tri-n-butylphosphan)kupfer(I)acetylacetonat [(nBu3P)2Cu(acac)].
Dieses flüssige, nichtfluorierte β-Diketonat wird bei Temperaturen zwischen 100 und 160°C mit einer Mischung aus Wasserdampf und Sauerstoff zur Reaktion gebracht. ALD-typisches Schichtwachstum stellt sich in Abhängigkeit des gewählten Substrats zwischen 100 und 130°C ein. Auf Tantalnitrid- und Siliziumdioxidsubstraten werden dabei sehr glatte Schichten bei gesättigtem Wachstumsverhalten erhalten. Auch auf Rutheniumsubstraten werden gute Abscheideergebnisse erzielt, jedoch kommt es hier zu einer merklichen Durchmischung des ALD-Kupferoxids mit dem Untergrund. Tantalsubstrate führen zu einer schnellen Selbstzersetzung des Kupferprecursors, in dessen Folge neben geschlossenen Schichten während der ALD auch immer isolierte Keime oder größere Partikel erhalten werden. Die mittels ALD gewachsenen Kupferoxidschichten können in Gasphasenprozessen zu Kupfer reduziert werden.
Wird Ameisensäure als Reduktionsmittel genutzt, können diese Prozesse bereits bei ähnlichen Temperaturen wie die ALD durchgeführt werden, so dass Agglomeration der Schichten weitgehend verhindert wird. Als besonders vorteilhaft für die Ameisensäure-Reduktion erweisen sich
Rutheniumsubstrate. Auch für eine Integration mit nachfolgenden Galvanikprozessen zur Abscheidung von Kupfer zeigen sich Vorteile der Kombination ALD-Kupfer/Ruthenium, insbesondere hinsichtlich der Qualität der erhaltenen galvanischen Schichten und deren Füllverhalten in Leitbahnstrukturen. Der entwickelte ALD-Prozess besitzt darüber hinaus Potential zur Integration mit Kohlenstoffnanoröhren.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-201000725
Date02 June 2010
CreatorsWächtler, Thomas
ContributorsTU Chemnitz, Fakultät für Elektrotechnik und Informationstechnik, Universitätsverlag der Technischen Universität Chemnitz,, Prof. Dr. Thomas Geßner, Prof. Dr. Stefan E. Schulz, Prof. Dr. Thomas Geßner, Prof. Dr. Heinrich Lang, Prof. Dr. Thomas Mikolajick
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf, text/plain, application/zip

Page generated in 0.0035 seconds