Apesar de a fotocatálise heterogênea ser reconhecida como uma abordagem promissora e sustentável para promover processos de remediação ambiental, aplicações práticas de processos fotocatalíticos ainda são muito limitadas devido à baixa eficiência dos fotocatalisadores existentes. Neste contexto, a pesquisa na interface Química/Ciência dos Materiais é de grande relevância para o desenvolvimento de rotas sintéticas que permitam a obtenção e o controle das propriedades de novos fotocatalisadores multi-componentes visando desempenho fotocatalítico aprimorado. Os trabalhos descritos nesta tese abordam rotas sintéticas desenvolvidas ou aprimoradas para preparação de partículas e aerogéis nanoestruturados baseados na incorporação do fotocatalisador de alta atividade TiO2 em escala nanométrica junto à estruturas de sílica, que atuam como suporte estrutural de alta estabilidade térmica. Adicionalmente, os materiais sintetizados foram modificados com o hexacianometalato Fe4[Fe(CN)6]3, o Azul da Prússia (PB) como tentativa para aumento do desempenho fotocatalítico em reações de redução. A caracterização detalhada dos materiais foi realizada por amplo conjunto de técnicas visando correlacionar atividade fotocatalítica com propriedades físicas e estruturais. Na primeira etapa do trabalho partículas core-shell SiO2@TiO2 foram preparadas pela adsorção e hidrólise controlada do precursor Isopropóxido de Titânio na superfície de partículas submicrométricas de sílica. Variando a composição do solvente (razão isopropanol/etanol) foi possível controlar a cinética de deposição do TiO2, levando à controle sobre composição e morfologia das partículas SiO2@TiO2 sintetizadas. Este material apresentou eficiência de fotodegradação do corante Cristal Violeta superior a do TiO2 não-suportado, assim como elevada estabilidade térmica devido à formação de ligações interfaciais Si-O-Ti. Em uma segunda etapa, novas rotas de preparação de aerogéis de sílica-titânia foram desenvolvidas empregando TiCl4 como precursor alternativo aos alcóxidos de titânio e processamento dos materiais por secagem em CO2 supercrítico. Explorou-se a reação de termo-hidrólise do TiCl4 para promover a deposição termo-induzida de titania em géis monolíticos de sílica, bem como o método de gelificação assistida por epóxido para formação de rede tridimensional porosa de titânia ao redor de partículas de aerogel de sílica, levando à preparação de aerogéis core-shell SiO2@TiO2 e aerogéis nanocompósitos SiO2/TiO2, respectivamente. A estrutura mesoporosa robusta dos aerogéis e a capacidade da sílica de inibir a transformação de fase anatase-rutilo se refletiram em um aumento de atividade fotocatalítica com o aumento da temperatura de calcinação, sendo que os aerogéis de sílica-titânia tratados a 1000ºC apresentaram eficiência fotocatalítica superiores a dos aerogéis de titânia pura e do fotocatalisador comercial P25. Na parte final do trabalho, as partículas e aerogéis de SiO2/TiO2 e TiO2 foram modificados adicionalmente com o PB e com PB/MoS2 por métodos de fotodeposição. Demonstrou-se que o PB pode atuar como co-catalisador na reação de redução fotocatalítica de espécie altamente tóxicas de Cr(VI) em compostos não tóxicos de Cr(III), aumentando substancialmente a eficiência dos materiais baseados em TiO2 sobre radiação UV. Finalmente, a modificação concomitante dos fotocatalisadores com PB e o semicondutor MoS2 levam a aumento sinérgico de atividade redução fotocatalítica de Cr(VI) também sob luz visível. Os materiais desenvolvidos neste trabalho apresentam interessante potencial para aplicações em processos de remediação ambiental e desenvolvimento de revestimentos cerâmicos auto-limpantes. / Despite its potential as a promising and sustainable approach for environmental remediation, heterogeneous photocatalysis still has limited practical applicability due to the low efficiency of the existing photocatalysts. In this context, research on the Chemistry/Materials Science interface is of utmost importance for the development of synthetic routes that allow preparation of novel multi-component photocatalysts with controlled properties and enhanced photocatalytic performance. The studies reported in this thesis describe newly developed or improved synthetic routes for the preparation of nanostructured photocatalysts in the form of particles and aerogels through incorporation of highly photoactive TiO2 nanoparticles in silica materials as thermally stable structural supports. Additionally, the prepared silica-titania photocatalysts were further modified with Prussian Blue (PB), hexacyanometallate Fe4[Fe(CN)6]3, in order to enhance the efficiency of photocatalytic reduction reactions. In order to correlate the observed photocatalytic performance with the physical/structural properties of the photocatalysts, the prepared photocatalysts were characterized using an array of complimentary techniques. In the first part of the study, core-shell SiO2@TiO2 particles were prepared by the adsorption and controlled hydrolysis of titanium isopropoxide precursor on the surface of submicron silica particles. The rate of titania deposition and the resultant particle morphology as well as TiO2 loading could be effectively controlled by changing solvent composition (isopropanol/ethanol ratio). The prepared SiO2@TiO2 core-shell particles showed superior performance for crystal violet dye photodegradation as compared to unsupported TiO2, in addition to their improved thermal stability due to the formation of Si-O-Ti interfacial bonds. In the second part of thesis, new synthetic routes were developed for the preparation of high surface area silica-titania aerogels employing TiCl4 as an alternative titania precursor. We explored the thermohydrolysis of TiCl4 to promote thermo-induced deposition of titania on silica monolithic gels and epoxide-assisted gelation method for formation of titania gel network around silica aerogel particles, thus yielding SiO2@TiO2 core-shell and SiO2/TiO2 composite aerogels, respectively. The prepared silica-titania aerogels displayed remarkable physical properties, including high surface area, large pore volume and outstanding thermal stability of the supported anatase nanoparticles. The robust thermally stable mesoporous structure of the prepared aerogels, coupled with the ability of silica to inhibit anatase-to-rutile transformation, led to the enhancement of photocatalytic activity with an increase in annealing temperature to as high as 1000 ºC. In fact, the photocatalytic activity of silica-titania aerogels annealed at 1000 ºC outperforms that of both pristine titania aerogels and Degussa P25 commercial photocatalyst. In the final part of the study, the prepared TiO2-based particles and aerogels were further modified with PB and PB/MoS2 by photodeposition method. We could demonstrate that PB can act as an efficient co-catalyst for the photocatalytic reduction of highly toxic Cr(VI) species to the non-toxic Cr(III), thus largely improving the photocatalytic performance of TiO2-based photocatalysts under UV illumination. Finally, simultaneous modification of the titania-based photocatalysts with both PB and the visible-light active semiconductor MoS2 lead to a synergistic enhancement of photocatalytic reduction of Cr(VI) under visible-light as well. The photocatalytic materials developed in this study may find useful application in many areas such as environmental remediation, wastewater purification and the development of self-cleaning ceramic coatings.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-21082018-100333 |
Date | 21 May 2018 |
Creators | Ferreira Neto, Elias Paiva |
Contributors | Rodrigues Filho, Ubirajara Pereira, Worsley, Marcus Andre |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais. |
Page generated in 0.0072 seconds