This thesis reports on interactions between microgels and oppositely charged proteins. Two types of negatively charged microgels are investigated: poly(acrylic acid) microgels of 60-80 µm in diameter, and colloidal poly(NIPAM-co-acrylic acid) microgels of around 1 µm in diameter. The proteins used are lysozyme and cytochrome c, which both have positive net charge. The experimental techniques used in the studies of the larger microgels are mainly micromanipulator-assisted microscopy and confocal microscopy, while the smaller microgels are studied mainly with dynamic light scattering. It is observed that large amounts of protein are absorbed by the microgels, and that the uptake involves a substantial deswelling of the microgel. The uptake generally decreases as the ionic strength is increased, which is characteristic of electrostatic interactions. An ionic strength optimum is however observed in the case of lysozyme and poly(acrylic acid) microgels, where the highest uptake (10 gram lysozyme / gram microgel) is observed at ionic strength 40 mM. Cytochrome c uptake in poly(acrylic acid) microgels results in homogenous cytochrome c distribution throughout the microgel, whereas lysozyme uptake results in core-shell formation; the lysozyme concentration becomes much higher in the shell (outer part of the microgel) than in the core (inner part of the microgel). The shell constitutes a stress-bearing network which is sufficiently porous to allow protein diffusion through the shell. The different protein distributions are associated with different protein-protein interactions; strong protein-protein attraction promotes shell formation. In the case of colloidal microgels, lysozyme uptake decreases the electrophoretic mobility and the colloidal stability of the microgels. The microgels flocculate as the uptake reaches charge ratio 0.6-0.7 (positive lysozyme charges/negative microgel charges), largely independent of ionic strength. Initial experiments on the combination of cytochrome c and colloidal microgels show that colloidal stability is maintained at a range of conditions (ionic strength, protein concentration) where flocculation occurred in the case of lysozyme.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-101246 |
Date | January 2009 |
Creators | Johansson, Christian |
Publisher | Uppsala universitet, Institutionen för farmaci, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, 1651-6192 ; 98, ; |
Page generated in 0.0026 seconds