Return to search

The Synthesis of Core-Shell Iron@Gold Nanoparticles and Their Characterization

Au-coated magnetic Fe nanoparticles have been successfully synthesized by partial replacement reaction in a polar aprotic solvent with about 11 nm core of Fe and about 2.5 nm shell of Au. In this work, a combination of TEM (transmission electron microscopy), XRD (X-ray Powder Diffractometry), EDS (Energy disperse X-ray spectroscopy), SQUID (Superconducting Quantum Interference Device), TGA (Thermograviometric analysis), UV-visible absorption spectroscopy and Faraday rotation were employed to characterize the morphology, structure, composition and magnetic properties of the products. HRTEM images show clear core-shell structure with different crystal lattices from Fe and Au. SQUID magnetometry reveals that particle magnetic properties are not significantly affected by the overlayer of a moderately thick Au shell. The Au-coated particles exhibit a surface plasmon resonance peak that red-shifts from 520 to 680 nm. And all the above characterizations show that in this sample, there are no Fe oxides inside the particle.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-1082
Date21 May 2004
CreatorsBan, Zhihui
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.0024 seconds