Return to search

Root and canopy characteristics of maize types with extreme architectures

Studies of corn root morphology, canopy description, light and nutrient relationships, have focused on conventional corn hybrids. We are now extending these studies to other corn types with contrasting canopy and root architectures. Field and greenhouse experiments were carried out in order to characterize root morphology, N status in the plant and its relationship with yield and yield components, canopy architecture and light interception of these genotypes. The indoor experiments investigated root morphology and how N affects it. Root fractal geometry and its relationship with standard measured root variables were investigated. The field research, at two sites and over two growing seasons, examined (i) maize canopy architecture with regard to light interception and (ii) nitrogen effects on grain yield of different maize genotypes. Four genotypic types were included: (i) Leafy reduced-stature, Lfy1rd1 (LRS), (ii) non Leafy-reduced stature, lfyrd1 (NLRS), (iii) Leafy normal stature, Lfy1Rd1 (LNS), and (iv) conventional commercial hybrids, lfy1Rd1. Pioneer 3905 served as the check hybrid for late maturity, and Pioneer 3979, the check for early maturity. The work allowed development of following methods: (i) root sampling for measurement of large root systems, (ii) staining to enhance root contrast for measurement with a scanner-based software system, (iii) sample size determination for SPAD meter readings, and (iv) the design and construction of a mobile and multi-strata device for measurement of light interception. Data were collected for mathematical characterization of canopies (i.e. leaf angle, co-ordinates of the maximum height of the leaf, co-ordinates of the leaf tip), plant N status (SPAD meter readings), light interception, yield and grain yield components. Conventional hybrids generally showed greater root length and surface area than their leafy genotypic counterparts at early developmental stages (i.e. up to 15 days from emergence). However, Leafy geno

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.36898
Date January 2000
CreatorsCosta, Carlos.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Plant Science.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001809683, proquestno: NQ69991, Theses scanned by UMI/ProQuest.

Page generated in 0.0022 seconds