Return to search

The effect of water table management on the migration of phosphorus and on grain corn yields

Due to recent research suggesting that water table management (WTM) can significantly reduce nitrate (NO3") loads in agricultural drainage, a study was carried out in 2001 and 2002 in Coteau-du-Lac, 60 km west of Montreal, to investigate the effect of water table management on the migration of phosphorus (P) via tile drainage and surface runoff. The second main objective was to study the influence of WTM on grain corn yields. Two drainage treatments were compared: conventional free drainage and WTM (combined controlled drainage and subirrigation) with a design water table depth at 0.6 m below the ground surface. Tile drainage and surface runoff were monitored and sampled automatically. Increased outflow volumes and concentrations - and therefore increased P loads - were measured in drainage water from plots under WTM. Plots under WTM also generally exhibited higher P loads in surface runoff. Higher P concentrations in surface runoff from plots under WTM were observed in surface runoff, especially during winter. Phosphorus loads from combined tile drainage and surface runoff were low compared with literature data (<0.4 kg/ha/year). However, the mean P concentrations in tile drainage were above Quebec's surface water quality standard of 0.03 mg total P/L during both growing seasons in plots under WTM, but not in plots with conventional free drainage. Mean P concentrations in surface runoff water routinely exceeded the criteria, except in plots with conventional free drainage in winter 2002. Therefore, P from tile drainage and surface runoff could contribute to the eutrophication of surface water. Based on these results, WTM increases P loads from the field, both in tile drainage and surface runoff. However, the well water used for subirrigation was found to contain P concentrations above Quebec's surface water quality standard, and this could partly explain the higher P concentrations found in water from plots under WTM. Water table management increased grain corn yields by 35% in both years. The growing seasons of 2001 and 2002 were among the driest ever recorded in Canada.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.19763
Date January 2003
CreatorsStämpfli, Nicolas
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Bioresource Engineering)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002024401, Theses scanned by McGill Library.

Page generated in 0.002 seconds