Return to search

Tours de corps de fonctions algébriques et rang de tenseur de la multiplication dans les corps finis

On s'intéresse dans cette thèse à la détermination du rang de tenseur de la multiplication dans $mathbb{F}_{q^n}$, l'extension de degré $n$ du corps fini $mathbb{F}_q$ ; ce rang de tenseur correspond en particulier à la complexité bilinéaire de la multiplication dans $mathbb{F}_{q^n}$ sur $mathbb{F}_q$. Dans cette optique, on présente les différentes évolutions de l'algorithme de type évaluation-interpolation introduit en 1987 par D.V. et G.V. Chudnovsky et qui a permis d'établir que le rang de tenseur de la multiplication dans $mathbb{F}_{q^n}$ était linéaire en~$n$. Cet algorithme en fournit désormais les meilleures bornes connues dans le cas d'extensions de degré grand relativement au cardinal du corps de base — le cas des petites extensions étant bien connu. Afin d'obtenir des bornes uniformes en le degré de l'extension, il est nécessaire, pour chaque $n$, de déterminer un corps de fonctions algébriques qui convienne pour appliquer l'algorithme pour $mathbb{F}_{q^n}$, c'est-à-dire qui ait suffisamment de places de petit degré relativement à son genre $g$ et pour lequel on puisse établir l'existence de diviseurs ayant certaines propriétés, notamment des diviseurs non-spéciaux de degré ${g-1}$ ou de dimension nulle et de degré aussi près de ${g-1}$ que possible ; c'est pourquoi les tours de corps de fonctions sont d'un intérêt considérable. En particulier, on s'intéresse ici à l'étude des tours de Garcia-Stichtenoth d'extensions d'Artin-Schreier et de Kummer qui atteignent la borne de Drinfeld-Vlu{a}duc{t}. / In this thesis, we focus on the determination of the tensor rank of multiplication in $mathbb{F}_{q^n}$, the degree $n$ extension of the finite field $mathbb{F}_q$, which corresponds to the bilinear complexity of multiplication in $mathbb{F}_{q^n}$ over $mathbb{F}_q$. To this end, we describe the various successive improvements to the evaluation-interpolation algorithm introduced in 1987 by D.V. and G.V. Chudnovsky which shows the linearity of the tensor rank of multiplication in $mathbb{F}_{q^n}$ with respect to $n$. This algorithm gives the best known bounds for large degree extensions relative to the cardinality of the base field (the case when the degree of the extension is small is well known). In order to obtain uniform bounds, we need to determine, for each $n$, a suitable algebraic function field for the algorithm on $mathbb{F}_{q^n}$, namely a function field with sufficiently many places of small degree relative to its genus $g$ and for which we can prove the existence of divisors with some good properties such as non-special divisors of degree ${g-1}$ or zero-dimensional divisors with degree as close to ${g-1}$ as possiblestring; these conditions lead us to consider towers of algebraic function fields. In particular, we are interested in the study of Garcia-Stichtenoth towers of Artin-Schreier and Kummer extensions which attain the Drinfeld-Vlu{a}duc{t} bound.

Identiferoai:union.ndltd.org:theses.fr/2012AIXM4081
Date12 December 2012
CreatorsPieltant, Julia
ContributorsAix-Marseille, Ballet, Stéphane
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0016 seconds