Es wurden insgesamt sieben Gallozyanin-gefärbte Schnittserien durch die rechte oder linke Hemisphäre von zwei Kontrollfällen (männlich, 28 Jahre, rechte Hemisphäre, weiblich, 65 Jahre, linke Hemisphäre), einem Fall mit Megalenzephalie (männlich, 48 Jahre, linke Hemisphäre), einem Fall von M. Little (65 Jahre, männlich, linke Hemisphäre), einem Fall von Alzheimerscher Krankheit (85 Jahre, weiblich, linke Hemisphäre) und einem Fall mit Huntingtonscher Krankheit (männlich, 49 Jahre, beide Hemisphären) verwendet. Die zentralen Anteile der Hemisphären mit den kompletten Schnittserien durch Thalami und Corpora striata wurden mit einer digitalen Kamera in Nahaufnahmetechnik aufgenommen, mit einem kommerziellen Bildbearbeitungs-programm (Adobe Photoshop 6.0®) aufbereitet und die derart aufbereiteten Bilder am Computer mit einer Computer gestützten 3D-Rekonstruktionssoftware (Amira®) verar-beitet. Ein wesentlicher Schritt in der Bearbeitung besteht in der Abgrenzung von Thalamus und Striatum von den benachbarten Strukturen. Die hohe Schnittdicke von 440 µm erleichterte dabei die zytoarchitektonische Abgrenzung beider Kerngebiete. Anders als erwartet unterliegen auch Serienschnitte mit einer Dicke von 440 µm Schrumpfungsartefakten, die nicht immer auf den ersten Blick erkennbar sind. Aus diesem Grund beschränken sich die 3D-Rekonstruktionen nicht auf das manuelle Abgrenzen von Strukturen. Vielmehr müssen alle Schnitte sorgfältig den Koordinaten des Raumes angepasst, hintereinander in der z-Achse angeordnet und bei Bedarf gedreht und verschoben werden. Die Rekonstruktionssoftware bietet für diese Prozedur eine halbautomatische Unterstützung. Einzelne stark verformte Schnitte mussten aber dennoch teilweise aufwändig der Serie angepasst werden. Amira® bietet vielseitige Möglichkeiten in der Darstellung der räumlich rekonstruierten Schnitte. Durch Interpolation werden die Rohdaten zum Teil stark verändert und die ursprünglich kantigen und eckigen Formen zunehmend geglättet. Diese Glättung ist der Erfahrung/Willkür des Untersuchers anheim gestellt und folglich werden die Grenzen zwischen einer realistischen 3D-Rekonstruktion und einer Fiktion fließend. Neben 3D-Rekonstruktionen lassen sich mit Amira auch die Volumina von Striatum und Thalamus berechnen. Diese Daten wurden mit den stereologisch bestimmten Kernvolumina und Nervenzellzahlen verglichen. Grundsätzlich liegen die mit Amira erhobenen Volumenwerte zwischen 1,4 und 6,65% unter den stereologisch geschätzten Werten. Diese Diskrepanz ist bei der bekannten biologischen Variabilität des menschlichen ZNS akzeptabel und im Vergleich mit Literaturangaben und -abbildungen dürften Form und Größe der rekonstruierten Thalami und Corpora striata der Wirklichkeit weitgehend entsprechen. Die Nervenzellzahlen schwanken dabei in einem weiten Bereich zwischen rund 71 Millionen im Striatum bei Megalenzephalie und weniger als 7 Millionen bei Chorea Huntington. Im Thalamus liegt die Nervenzellzahl zwischen rund 18 Millionen (Kontrollfall) und etwas mehr als 6 Millionen bei dem untersuchten Fall mit M. Little. Berücksichtigt man die vielfältigen physiologischen Verbindungen zwischen Thalamus und Striatum, so lassen die Schwankungen in den Nervenzellzahlen auf komplexe Interaktionen und Defizite bei den untersuchten Fällen schließen. Im Ergebnis unerwartet ist die weitgehende Konstanz in Form und Aussehen von Thalamus und Striatum im Endstadium von Alzheimerscher Demenz und bei einem Fall von M. Little. Offensichtlich stehen globale Atrophie- bzw. Degenerationsprozesse bei der Alzheimerschen Krankheit im Vordergrund mit der Folge, dass Thalamus und Striatum trotz deutlicher Nervenzellausfälle bei erhöhter Zahl von Gliazellen insgesamt nur wenig kleiner werden. Allerdings tat sich bei dem Fall mit M. Alzheimer an der Ventralseite des Thalamus eine Rinne auf, die bei den anderen untersuchten Fällen nicht gefunden und deren Ursache nicht geklärt werden konnte. Dramatisch erschienen die Größen- und Formveränderung des Striatum beim Chorea-Huntington-Fall. Nervenzell- und Gliazellausfälle im Striatum bei Chorea Huntington dürften die ausgeprägten makroskopischen Veränderungen erklären. Die Kombination von Serienschnitttechnik mit hoher Schnittdicke und einer Computer gestützten 3D-Rekonstruktion bietet bisher nie da gewesene und faszinierende Aspekte vom Bau des menschlichen ZNS. Nach Import in spezielle Computersoftware zur Animation von 3D-Modellen eröffnen die 3D-Rekonstruktionen auch neue Aspekte in der Präsentation der vermuteten Funktionsweise des ZNS. Dabei sollte aber in Anbetracht der komplexen methodischen Faktoren immer eine kritische Distanz zu vielfältigen Darstellungsformen am Bildschirm gewahrt bleiben. / In total we investigated seven gallocyanin stained slice series through the right and left hemisphere of two control cases (man, age 28, right hemisphere, female, age 65, left hemisphere), one case of Megalencephaly (man, age 48, left hemisphere), one case of M. Little (man, age 65, left hemisphere), one case of Alzheimers Disease (female, age 85, left hemisphere) and one case of Huntingtons Disease (man, age 49, both hemispheres). The central parts of the hemispheres with the complete slice series through thalamus and striatum were captured with a digital camera and processed with a commercial picture-processing-programme (Adobe Photoshop 6.0®) and the result was further processed to 3D-models with another software (Amira®). One fundamental step in this procedure is the demarcation between thalamus and striatum and their sourrounding cell groups. The high slice thickness of 440 µm makes this much easier. Different from our expactation we found shrinking artefacts even in slices with a thickness of 440 µm, which were not always visible at first sight. For this reason we had to do more than manual demarcation of the structures, e.g. arrangement of all slices in a row in z-axes and rotation of the slices when needed. The reconstruction software can do this semiautomatically, but in some cases we had to do this on our own in a very difficult procedure. Amira® has a lot of possibilities to show the reconstructed slices. The original database is transformated during the reconstruction procedure so that the models are influenced subjective. Besides 3D-reconstructions we can measure the volume of striatum and thalamus with Amira®. We compared this data with the volumes determined with stereological methods and can say that the volumes measured with Amira® lay 1,4-6,65% under the volumes determined with stereological methods. This different is acceptabel in the face of biological variability. The amount of neurons extend from 71 millions in striatum with Megalencephaly to 7 millions in striatum with Huntingtons Disease. In the thalamus it extends from18 millions in a control case to 6 millions in a M.Little case. Unexpected was the constant form and shape of thalamus and striatum in the late stages of neurodegenerative diseases like Alzheimers Disease. We suggest that the undergoing neurons are replaced by glia and so the macroscopical form remains nearly constant. On the other hand we could see dramatically changes in form and size of the striatum in the Huntingtons Disease case. The combination of serial slice technique with high sliche thickness and computer supported 3D-reconstruction offers new and fascinating aspects of the human central nervous system. Knowing the complex methods to get to this reconstructions one should always observe these models critical.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:2094 |
Date | January 2007 |
Creators | Müller, Kerstin Anni |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds