Dans cette thèse, nous étudions le problème de la séparation aveugle de mélanges linéaires convolutifs sur-déterminés réels ou complexes de sources. Les sources considérées sont réelles ou complexes, déterministes ou aléatoires et dans ce dernier cas statistiquement indépendantes ou corrélées, stationnaires, cyclostationnaires ou non-stationnaires. Nous développons des approches combinant de nouveaux algorithmes de (bloc) diagonalisation conjointe (non unitaires) à de nouveaux détecteurs de points (temps-fréquence ou autres...) particuliers permettant d'élaborer le ou les ensembles de matrices devant être (bloc) diagonalisées conjointement. Les principaux avantages de ces approches sont d'être plus directes en ce se sens qu'elles ne requièrent plus de blanchiment préalable des observations. Elles permettent en outre d'aborder le cas réputé difficile des signaux corrélés. En ce qui concerne les algorithmes de (bloc) diagonalisation conjointe, nous proposons quatre nouveaux algorithmes sans contrainte d'unitarité sur la matrice recherchée. Le premier algorithme est de type algébrique itératif. Il est basé sur l'optimisation d'un critère de type moindres carrés. Les trois autres approches utilisent un schéma d'optimisation de type gradient. Dans un premier temps le calcul du gradient matriciel de la fonction de coût étudiée est approché. Puis dans un second temps le calcul exact est mené et deux nouveaux algorithmes sont proposés : l'un à base de gradient, l'autre à base de gradient relatif. Nous étudions les versions à pas fixe de ces trois algorithmes, puis les versions à pas optimal afin d'accélérer la convergence des algorithmes (le pas est alors recalculé algébriquement à chaque itération en cherchant les racines d'un polynôme d'ordre trois). Un lien avec la diagonalisation conjointe non unitaire est également établi. Ces algorithmes de bloc-diagonalisation conjointe possèdent l'avantage d'être généraux : les matrices de l'ensemble considéré ne sont ni nécessairement réelles, ni à symétrie hermitienne, ni définies positives et le bloc-diagonaliseur conjoint peut être une matrice unitaire ou non-unitaire.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00325910 |
Date | 19 July 2008 |
Creators | Ghennioui, Hicham |
Publisher | Université du Sud Toulon Var |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds