Return to search

Korelovaná sondová a elektronová mikroskopie pro studium moderních magnetických nanomateriálů / Correlated probe and electron microscopy for the study of modern magnetic nanomaterials

High pressure on the development of new magnetic materials and their miniaturization also emphasizes the development of new analytical techniques. This diploma thesis deals with the development and demonstration of correlated magnetic force and electron microscopy, which is a promising tool for the characterization of magnetic nanomaterials. The first part of this thesis describes the fundamental physics of micromagnetism with a focus on cylindrical nanofibers. The following pages describe optic, probe, electron, and synchrotron methods for mapping the magnetic properties of materials. The next part describes magnetic domain wall motion in cylindrical nanowires performed as a part of a more extensive material study. The last part of the thesis describes the development of correlated magnetic force and electron microscopy on LiteScope device. A production of magnetic probes was designed and successfully tested. Probes were fabricated by focused electron beam-induced deposition from the Co2(CO)8 precursor. Further, the developed correlated microscopy is demonstrated on a multilayer PtCo sample, magnetic cylindrical nanofibers, NiFe vortex structures, and FeRh metamagnetic nano-islands.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:443751
Date January 2021
CreatorsNovotný, Ondřej
ContributorsFlajšman, Lukáš, Pavera, Michal
PublisherVysoké učení technické v Brně. Fakulta strojního inženýrství
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0014 seconds