Return to search

High-strength stainless steels for corrosion mitigation in prestressed concrete: development and evaluation

The use of stainless steel alloys in reinforced concrete structures has shown great success in mitigating corrosion in even the most severe of exposures. However, the use of high-strength stainless steels (HSSSs) for corrosion mitigation in prestressed concrete (PSC) structures has received limited attention. To address these deficiencies in knowledge, an experimental study was conducted to investigate the feasibility of using HSSSs for corrosion mitigation in PSC. The study examined mechanical behavior, corrosion resistance, and techniques for the production of HSSS prestressing strands. Stainless steel grades 304, 316, 2101, 2205, 2304, and 17-7 along with a 1080 prestressing steel control were included in the study. Tensile strengths of 1250 to 1550 MPa (181 to 225 ksi) were achieved in the cold-drawn HSSSs. 1000 hr stress relaxation of all candidate HSSSs was predicted to be between 6 and 8 % based on the results of 200 hr tests conducted at 70 % of the ultimate tensile strength. Residual stresses due to the cold drawing had a significant influence on stress vs. strain behavior and stress relaxation. Electrochemical corrosion testing found that in solutions simulating alkaline concrete, all HSSSs showed exceptional corrosion resistance at chloride (Cl-) concentrations from zero to 0.25 M. However, when exposed to solutions simulating carbonated concrete, corrosion resistance was reduced and the only HSSSs with acceptable corrosion resistance were duplex grades 2205 and 2304, with 2205 resistant to corrosion initiation at Cl- concentrations up to 1.0 M (twice that in seawater). Based on these results, duplex grades 2205 and 2304 were identified as optimal HSSSs and were included in additional studies which found that: (1) 2304 is susceptible to corrosion when tested in a stranded geometry, (2) 2205 and 2304 are not susceptible to stress corrosion cracking, and (3) 2205 and 2304 are susceptible to hydrogen embrittlement. Efforts focused on the production of 2205 and 2304 prestressing strands showed that they could be produced as strands using existing ASTM A416 prestressing strand production facilities. Due to the ferromagnetic properties of 2205 and 2304, a low-relaxation heat treatment was found to be a viable option to reduce stress relaxation and improve mechanical properties. The overall conclusion of the study was that HSSSs, especially duplex grades 2205 and 2304, show excellent promise to mitigate corrosion if utilized as prestressing reinforcement in PSC structures exposed to severe marine environments.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/41083
Date16 May 2011
CreatorsMoser, Robert David
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.002 seconds