Return to search

Effect of Alloy Composition, Free Volume and Glass Formability on the Corrosion Behavior of Bulk Metallic Glasses

Bulk metallic glasses (BMGs) have received significant research interest due to their completely amorphous structure which results in unique structural and functional properties. Absence of grain boundaries and secondary phases in BMGs results in high corrosion resistance in many different environments. Understanding and tailoring the corrosion behavior can be significant for various structural applications in bulk form as well as coatings. In this study, the corrosion behavior of several Zr-based and Fe-Co based BMGs was evaluated to understand the effect of chemistry as well as quenched in free volume on corrosion behavior and mechanisms. Presence of Nb in Zr-based alloys was found to significantly improve corrosion resistance due to the formation of a stable passive oxide. Relaxed glasses showed lower rates compared to the as-cast alloys. This was attributed to lowering of chemical potential from the reduced fraction of free volume. Potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) techniques helped in quantifying the corrosion rate and polarization resistance. The effect of alloy composition was quantified by extensive surface analysis using Raman spectroscopy, energy dispersive x-ray spectroscopy and auger spectroscopy. Pitting intensity was higher in the as-cast glasses than the relaxed glasses. The electrochemical behavior of a Zr-Ti-Cu-Ni-Be bulk metallic glass subjected to high strain processing was studied. High strain processing caused shear band formation and an increase in the free volume. Potentiodynamic polarization and EIS showed a strong correlation between the enthalpy of structural relaxation and corrosion rate and polarization resistance. Pitting was observed to preferentially occur on shear bands in the processed samples, while it was stochastic in unprocessed glass. The corrosion analysis of Co-Fe glasses showed an increase in corrosion current density when Fe content was increased from 0 to 7 at%. The corrosion resistance improved when Fe content was further increased to 15 at%. Similar trend was seen in EIS studies. The improved corrosion resistance at 15 at% Fe can be attributed to the large supercooled region that facilitates the formation of completely amorphous alloy, in contrast to lower Fe containing alloys, where short range ordering may deteriorate the corrosion resistance. Porous metallic glass structure was developed by electrochemical dealloying via cyclic voltammetry. Mechanical properties and changes in electrical conductivity were measured as a function of depth from surface by nano-indentation and nano electrical contact resistance technique. The nanoporous layer was found have hardness of 0.41 GPa and elastic modulus of nearly 22 GPa. The resistivity of the nanoporous layer continuously decreased when moving towards the substrate as the indentation depth increased which is attributed to the gradient in pore size.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc822824
Date12 1900
CreatorsAyyagari, Venkata Aditya
ContributorsMukherjee, S. (Sundeep), Aouadi, Samir, Wang, Zhiqiang
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatxi, 85 pages : illustrations (chiefly color), Text
RightsPublic, Ayyagari, Venkata Aditya, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0022 seconds