Return to search

Algoritmy pro detekci anomálií v datech z klinických studií a zdravotnických registrů / Algorithms for anomaly detection in data from clinical trials and health registries

This master's thesis deals with the problems of anomalies detection in data from clinical trials and medical registries. The purpose of this work is to perform literary research about quality of data in clinical trials and to design a personal algorithm for detection of anomalous records based on machine learning methods in real clinical data from current or completed clinical trials or medical registries. In the practical part is described the implemented algorithm of detection, consists of several parts: import of data from information system, preprocessing and transformation of imported data records with variables of different data types into numerical vectors, using well known statistical methods for detection outliers and evaluation of the quality and accuracy of the algorithm. The result of creating the algorithm is vector of parameters containing anomalies, which has to make the work of data manager easier. This algorithm is designed for extension the palette of information system functions (CLADE-IS) on automatic monitoring the quality of data by detecting anomalous records.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:385306
Date January 2018
CreatorsBondarenko, Maxim
ContributorsBlaha, Milan, Schwarz, Daniel
PublisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0021 seconds