Nos encontramos atualmente em um momento histórico privilegiado para a cosmologia. Na última década, o grande progresso das observações astronô- micas permitiu que diversos modelos cosmológicos pudessem ser testados com grande precisão. Com uma série de resultados observacionais sendo lançados, obtivemos informações valiosas sobre a expansão acelerada do universo primitivo e a expansão acelerada atual. Em sua essência, tais esforços observacionais buscam esclarecer algumas das questões mais fundamentais da cosmologia moderna, como a compreensão do mecanismo responsável pela aceleração do universo. Muitas perguntas estão associadas à tal questão, entre elas podemos citar: (i) Qual a natureza da substância, ou qual a origem do fenômeno, que está atualmente acelerando a expansão do universo? (ii) Por qual razão esta expansão acelerada iniciou recentemente (nos últimos 5-8 bilhões de anos), e não no passado distante ou no futuro remoto? (iii) Qual a variante inflacionária que operou no universo primitivo e qual sua conexão (se existe alguma) com o atual estágio acelerado do universo? Em nossa compreensão, as indagações acima fazem parte dos maiores problemas da cosmologia atual. A ampla abrangência de tais questões significa que avanços em qualquer uma delas terá implicações teóricas e observacionais em outras áreas envolvendo a interface formada pela Astronomia, Cosmologia e Física de Partículas. As três questões acima estão diretamente conectadas com os objetivos do presente trabalho. Acreditamos também que seu estudo pode lançar alguma luz e melhorar nossa compreensão sobre questões mais fundamentais da física. Neste contexto, analisamos diferentes modelos cosmológicos para a acelera- ção do universo à luz dos mais recentes dados observacionais de supernovas, radiação cósmica de fundo e oscilações acústicas de bárions. Propomos, aqui, alternativas ao Modelo Padrão da Cosmologia, ao mostrar que diversos fenômenos físicos podem estar associados à expansão do universo, gerando a aceleração observada sem a necessidade de se introduzir componentes desconhecidas no universo além da matéria escura. Além de desenvolver uma revisão crítica do Modelo Padrão, discutimos nesta tese especialmente três modelos para a expansão acelerada do universo. O primeiro deles considera a aceleração cósmica como sendo efeito da criação quântica de partículas de matéria escura, ou radiação, às custas do campo gravitacional variando continuamente com a expansão do universo. O segundo modelo considera o processo de viscosidade volumar no fluido cosmológico como sendo responsável pela aceleração. Esta viscosidade volumar se deve à perda de equilíbrio termodinâmico durante a expansão do fluido. O terceiro modelo, o modelo de decaimento do vácuo, considera como responsá- vel pela aceleração uma energia do vácuo que decai nas outras componentes cósmicas continuamente ao longo do tempo. Analisamos as relações existentes entre estes três modelos, além do Modelo Padrão, e as condições sob as quais os mesmos fornecem uma dinâmica equivalente para o universo. Também obtemos interessantes vínculos para os parâmetros destes modelos ao fazermos, além de uma análise observacional, uma análise teórica baseada na dinâmica e na termodinâmica associada a cada cenário. Sugerimos que estes cenários são capazes de aliviar diversos problemas conceituais do Modelo Padrão da Cosmologia. Numa segunda etapa, mostramos que os processos físicos descritos acima podem ser responsáveis tanto pela aceleração cósmica atual, quanto pela aceleração primordial que se supõe ter ocorrido no universo antigo. Tal abordagem fornece uma descrição unificada para a evolução cosmológica. Acreditamos ser de fundamental importância que o processo que dirigiu a aceleração primordial possa ser relacionado com o mesmo responsável pela atual fase de expansão acelerada do universo. Além disto, é possível que as dificuldades que atingem a interface que une a Relatividade Geral, a Cosmologia e a Teoria Quântica de Campos possam ser amenizadas através de uma melhor compreensão do processo de criação gravitacional de partículas, do decaimento do vácuo e suas conexões com o contexto da inflação primordial. Para comparar e vincular os modelos propostos, analisamos também o processo de formação das estruturas cosmológicas nestes modelos. Introduzimos a teoria de perturbações cosmológicas, primeiramente, através de uma análise do Modelo Padrão. A partir daí, apresentamos uma abordagem mais geral para o tratamento das perturbações chamada teoria de campo efetiva para a inflação. Neste contexto, analisamos quais previsões são obtidas ao se quebrar algumas suposições usualmente assumidas nestes modelos. Por fim, através de uma análise do espectro de potências primordial do modelo de criação gravitacional de partículas e do modelo de viscosidade, mostramos, pela primeira vez, que os mesmos podem ser capazes de gerar um cenário inflacionário para o universo primitivo em concordância com as observações atuais. / We are currently in a privileged moment for cosmology. In the last decade, the great progress of astronomical observations made possible that several cosmological models could be tested with great accuracy. With several observational data being released we obtained valuable information concerning the primordial acceleration of the universe and the recent accelerated expansion. Essentially, these observational efforts aim to clarify some of the most fundamental questions of modern cosmology, which concerns the understanding of the mechanism responsible for the acceleration of the universe. Many questions are related to this issue, among them we can mention: (i) What is the nature of the substance, or what is the origin of the phenomenom, responsible for the acceleration of the expansion? (ii) For which reason the accelerated expansion started recently (within the last 5-8 billion years), and not in the distant past or distant future? (iii) What is the inflationary variant that operated in the early universe, and what is its connection (if there is any) with the current accelerated stage of the universe? In our understanding the above questions are part of the biggest problems in modern cosmology. The interconnection between these issues means that advances in any of them will have theoretical and observational implications in other areas involving the interface formed by Astronomy, Cosmology and Particle Physics. The three questions above are directly connected to the objectives of this work. We also belive that their study can shed some light in our understanding of the remaining issues. In this context, we analyze different cosmological models for the acceleration of the universe in the light of the latest data released from supernovae, cosmic microwave background and baryon acoustic oscillations, comparing the results with the ones concerning the Standard Model of Cosmology. We propose alternatives to the Standard Model of Cosmology, by showing that several physical phenomena can be associated to the expansion of the universe, producing the observed acceleration without the need to introduce unknown components in the universe besides the dark matter. In addition to developing a critical revision of the Standard Model, we discuss in this thesis especially three models for the accelerated expansion of the universe. The first one considers the cosmic acceleration as an effect of the creation of dark matter particles, or radiation, at the expense of the gravitational field varying continuously with the expansion of the universe. The second model considers the process of bulk viscosity in the cosmological fluid as being responsible for the acceleration of the universe. This bulk viscosity is due to the loss of local thermodynamic equilibrium during the expansion of the fluid. The third model, the vacuum decaying model, considers as responsible for the acceleration, a vacuum energy which decays continuously into other cosmological components. We analyze the relations between these three models, and also the Standard Model, and the conditions under which they provide an equivalent dynamic to the universe. We also obtain interesting constraints for the parameters of these models by making, besides an observacional analysis, a theoretical analysis based on the dynamics and thermodynamics associated to each scenario. We will show that these alternative scenarios are able to alleviate several theoretical problems of the Standard Cosmological Model. In a second part, we show that the physical phenomena described above may be responsible for the recent cosmic acceleration, as well as for the primordial acceleration that is supposed to have occurred in the early universe. Such approach provides an unified description for the cosmological history. We belive it is of great importance that the process responsible for inflation can be identified with the one responsible for the current phase of accelerated expansion of the universe. Moreover, it is quite possible that the difficulties concerning the interface connecting General Relativity, Cosmology and Quantum Field Theory can be reduced through a better understanding of the gravitational particle creation process, the decay of the vacuum and its connections with the primordial inflationary context. In order to constrain and compare the models proposed here, we also analyse the process of cosmological structure formation in these models. We firstly introduce the perturbation theory through an analysis of the Standard Model. Then we introduce a more general approach to the treatment of cosmological perturbations which is called effective field theory of inflation. In this context, we analyse which predictions are obtained when we break some of the assumptions usually imposed in these models. Finally, through an analysis of the primordial power spectrum of the gravitational particle creation model and the viscosity model, we show, for the first time, that these models are able to describe an inflationary scenario for the early universe totally in agreement with current observations.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-18082015-112701 |
Date | 24 June 2015 |
Creators | Leila Lobato Graef |
Contributors | José Ademir Sales de Lima, George Emanuel Avraam Matsas, Laerte Sodre Junior, Paulo Teotonio Sobrinho, Vilson Tonin Zanchin |
Publisher | Universidade de São Paulo, Física, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds