We develop a simple one-zone model of the steady-state Crab nebula spectrum encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for GeV-TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting differential energy spectrum of photons. We find an impressive agreement with the observed spectrum of synchrotron emission, and the synchrotron self-Compton component reproduces the previously unexplained broad 200-GeV peak that matches the Fermi/Large Area Telescope (LAT) data beyond 1 GeV with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) data. We determine the parameters of the single log-parabola electron injection distribution, in contrast with multiple broken power-law electron spectra proposed in the literature. The resulting photon differential spectrum provides a natural interpretation of the deviation from power law customarily fitted with empirical multiple broken power laws. Our model can be applied to the radio-to-multi-TeV spectrum of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants, as well as to interplanetary shocks.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/625798 |
Date | 11 1900 |
Creators | Fraschetti, F., Pohl, M. |
Contributors | Univ Arizona, Dept Planetary Sci, Univ Arizona, Dept Astron |
Publisher | OXFORD UNIV PRESS |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society |
Relation | http://academic.oup.com/mnras/article/471/4/4856/3980212/Particle-acceleration-model-for-the-broadband |
Page generated in 0.0021 seconds