The influence of matter described by the Vlasov equation, on the evolution of anisotropy in the spatially-homogeneous universes, called the Bianchi cosmologies, is studied. Due to the spatial-homogeneity, the Einstein equations for each Bianchi Type are reduced to a set of coupled ordinary differential equations, which has Hamiltonian form with the metric components being the canonical coordinates. In the vacuum Bianchi cosmologies, it is known that a curvature potential, which comes from the symmetries of the three-dimensional Lie groups, determines the basic properties of the evolution of anisotropy. In this work, matter potentials are constructed for Vlasov matter. They are obtained by first introducing a new matter action principle for the Vlasov equation, in terms of a conjugate pair of functions, and then enforcing the symmetry to obtain a reduction. This yields an expression for the matter potential in terms of the phase space density, which is further reduced by assuming cold streaming matter. Some vacuum Bianchi cosmologies and Type I with Vlasov matter are compared. It is shown that the Vlasov-matter potential for cold streaming matter results in qualitatively distinct dynamics from the well-known vacuum Bianchi cosmologies. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/18198 |
Date | 05 October 2012 |
Creators | Okabe, Takahide |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0015 seconds