Le but de ce travail est d'étudier et de développer des voies pour améliorer l'efficacité des cellules solaires à base de Kesterite. La première partie de ce manuscrit traite du développement d’un procédé de base : le mécanisme de formation de l’absorbeur est étudié en fonction des conditions de croissance du composé Cu2ZnSnS4 (CZTS à base de soufre pur) et Cu2ZnSnSe4 (CZTSe à base de sélénium pur). Un procédé séquentiel en deux étapes a été utilisé pour synthétiser l’absorbeur en Kesterite. La première étape est un dépôt par pulvérisation cathodique des précurseurs métalliques (Cu, Zn et Sn élémentaires) et la deuxième étape consiste en un recuit des précurseurs sous atmosphère de sélénium (pour le CZTSe dans un réacteur semi-ouvert) ou de soufre (pour le CZTS dans un réacteur ouvert). Différentes optimisations du procédé sont réalisées pour améliorer la microstructure et les performances des dispositifs. Dans le cas du dispositif à base de CZTSe, le meilleur rendement de conversion photovoltaïque obtenu est de 7,6% en utilisant un profil de température en deux étapes et un suscepteur fermé. Pour les cellules solaires à base de CZTS, la meilleure performance obtenue est de 5,9% grâce à l’optimisation de la température et de la pression partielle ensoufre : Les performances des dispositifs augmentent avec la pression partielle en soufre.L’incorporation de Na (Sodium) et de Sb (Antimoine) dans les absorbeurs Kesterite en pur soufre a été testée comme la première stratégie pour améliorer les performances des dispositifs à base de CZTS. L'incorporation de Sb n‘entraîne pas d'amélioration en termes de propriétés des matériaux ou des dispositifs, tandis que le co-dopage avec Na et Sb a montré une morphologie améliorée des absorbeurs. Cependant, cette amélioration n’est suivie d’aucun effet sur les propriétés photovoltaïques du dispositif. L’incorporation de Sb n’est donc pas bénéfique pour la cellule solaire à base de CZTS. D'autre part, la contamination intentionnelle avec du Na s'est avérée bénéfique pour les cellules solaires, particulièrement pour la tension en circuit ouvert. Par conséquent, l’efficacité des dispositifs avec une teneur en Na optimisée est doublée (> 4,5 %) par rapport à celle des échantillons de référence sans Na.La seconde étude pour améliorer les performances des cellules solaires à base de Kesterite concerne l’introduction de gradients de chalcogènes (S/Se) dans l’épaisseur de l’absorbeur. Le but est d’obtenir des gradients de bande interdite afin d’augmenter la longueur de collection des porteurs et de diminuer les phénomènes de recombinaison. Dans ce but, deux procédés sont développés pour réaliser des gradients simples (en face avant ou en face arrière de l’absorbeur). Ces procédés consistent en des recuits successifs (sulfurisation/sélénisation) d’empilements de précurseurs. Pour obtenir un gradient en face avant, un recuit de sulfurisation à différentes températures et durées est appliqué après un recuit de sélénisation standard. Une température plus importante entraîne un gradient plus marqué. Une couche de défaut à base de soufre pur est également formée au cours de ce processus, qui peut être éliminée à l'aide d'une gravure au HCl. Le rendement de conversion photovoltaïque le plus élevé obtenu à l’aide de ce procédé est de 3,5%. Pour obtenir un gradient en face arrière, un recuit de sulfurisation à différentes températures avant un recuit de sélénisation standard a été utilisé. A faible température de sulfurisation, des absorbeurs avec une bonne morphologie ont été obtenus mais sans gradient de composition en chalcogène tandis que l’utilisation de températures de sulfurisation plus importantes ont entraîné l’apparition de gradients de composition mais ont détérioré la morphologie des absorbeurs. Ainsi, les voies et limites pour réaliser des absorbeurs de Kesterite à gradient de bande interdite sont proposées. / The goal of this work is to study and to develop routes toward efficiency improvement of Kesterite based solar cells. The first part of the manuscript deals with the development of a baseline process: formation mechanism of the absorber is studied according to the growth condition for both Cu2ZnSnS4 (pure sulfur absorber CZTS) and Cu2ZnSnSe4 (pure selenium absorber CZTSe) compounds. Two-step sequential process is used for synthesizing Kesterite material. The first step consists in the sputtering deposition of pure metallic precursors (elemental Cu, Zn, and Sn) and the second step consists in the annealing of precursors under selenium (for CZTSe in a semi-open reactor) or sulfur (for CZTS in an open reactor). In the case of CZTSe based solar cell, a maximum power conversion efficiency of 7.6% has been obtained using a two-step temperature profile and a closed susceptor. The best performance for a CZTS based device is 5.9%, this result has been obtained by optimizing the process temperature and sulfur vapor pressure: the higher sulfur vapor pressure the better device performance.Incorporation of Na (Sodium) and Sb (Antimony) in the pure sulfur Kesterite absorber has been tested as a first strategy to enhance performances of CZTS devices. Incorporation of Sb does not show any improvement in terms of material or device properties, whereas improved morphology is obtained by co-doping with Na and Sb. However, this improvement is not related to any effect on device properties. Thus, using Sb proved to be not beneficial for the CZTS-based solar cell. On the other hand, intentional contamination with Na is found to be beneficial particularly in terms of open circuit voltage. As a result, the device power conversion efficiency with optimized Na content is doubled (> 4.5%) compared to the reference sample without Na.The second study to increase efficiencies in Kesterite solar cells deals with the introduction of chalcogen (S/Se) gradients as the function of depth in the absorber. The aim is to obtain bandgap gradients in order to increase carrier collection length as well as decrease carrier recombination. For this purpose, two processes are developed to realize only simple grading (front or back surface gradients) which consist of sequential annealing stages (sulfurization/selenization) of precursor stacks. To obtain a front surface gradient, a sulfurization step at various temperatures and for different duration has been tested after a standard selenization process. A higher sulfurization temperature shows a higher degree of grading. A pure sulfur-based defect layer is also formed during this process, which can be removed using an HCl etching. A maximum efficiency of 3.5% is achieved with a CZTS-based device using this synthesis process. To realize back grading, variable temperature sulfurization annealing prior to a standard selenization process has been used. At a low temperature of sulfurization, good absorber morphologies are obtained but without the evidence of chalcogen gradient while using higher sulfurization temperature leads to graded absorbers but with poor morphology. Thus, the routes and limitations to realize kesterite absorber with gradient are proposed.
Identifer | oai:union.ndltd.org:theses.fr/2018GREAI085 |
Date | 03 December 2018 |
Creators | Suzon, Md Abdul Aziz |
Contributors | Grenoble Alpes, Mariette, Henri |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds