Return to search

Detection of methotrexate using surface plasmon resonance biosensors for chemotherapy monitoring

Le méthotrexate (MTX), un agent anti-cancéreux fréquemment utilisé en chimiothérapie, requiert généralement un suivi thérapeutique de la médication (Therapeutic Drug Monitoring, TDM) pour surveiller son niveau sanguin chez le patient afin de maximiser son efficacité tout en limitant ses effets secondaires. Malgré la fenêtre thérapeutique étroite entre l’efficacité et la toxicité, le MTX reste, à ce jour, un des agents anti-cancéreux les plus utilisés au monde. Les techniques analytiques existantes pour le TDM du MTX sont coûteuses, requièrent temps et efforts, sans nécessairement fournir promptement les résultats dans le délai requis. Afin d’accélérer le processus de dosage du MTX en TDM, une stratégie a été proposée basée sur un essai compétitif caractérisé principalement par le couplage plasmonique d’une surface métallique et de nanoparticules d’or. Plus précisément, l’essai quantitatif exploite la réaction de compétition entre le MTX et une nanoparticule d’or fonctionnalisée avec l’acide folique (FA-AuNP) ayant une affinité pour un récepteur moléculaire, la réductase humaine de dihydrofolate (hDHFR), une enzyme associée aux maladies prolifératives. Le MTX libre mixé avec les FA-AuNP, entre en compétition pour les sites de liaison de hDHFR immobilisés sur une surface active en SPR ou libres en solution. Par la suite, les FA-AuNP liées au hDHFR fournissent une amplification du signal qui est inversement proportionnelle à la concentration de MTX.
La résonance des plasmons de surface (SPR) est généralement utilisée comme une technique spectroscopique pour l’interrogation des interactions biomoléculaires. Les instruments SPR commerciaux sont généralement retrouvés dans les grands laboratoires d’analyse. Ils sont également encombrants, coûteux et manquent de sélectivité dans les analyses en matrice complexe. De plus, ceux-ci n’ont pas encore démontré de l’adaptabilité en milieu clinique. Par ailleurs, les analyses SPR des petites molécules comme les médicaments n’ont pas été explorés de manière intensive dû au défi posé par le manque de la sensibilité de la technique pour cette classe de molécules. Les développements récents en science des matériaux et chimie de surfaces exploitant l’intégration des nanoparticules d’or pour l’amplification de la réponse SPR et la chimie de surface peptidique ont démontré le potentiel de franchir les limites posées par le manque de sensibilité et l’adsorption non-spécifique pour les analyses directes dans les milieux biologiques. Ces nouveaux concepts de la technologie SPR seront incorporés à un système SPR miniaturisé et compact pour exécuter des analyses rapides, fiables et sensibles pour le suivi du niveau du MTX dans le sérum de patients durant les traitements de chimiothérapie. L’objectif de cette thèse est d’explorer différentes stratégies pour améliorer l’analyse des médicaments dans les milieux complexes par les biocapteurs SPR et de mettre en perspective le potentiel des biocapteurs SPR comme un outil utile pour le TDM dans le laboratoire clinique ou au chevet du patient.
Pour atteindre ces objectifs, un essai compétitif colorimétrique basé sur la résonance des plasmons de surface localisée (LSPR) pour le MTX fut établi avec des nanoparticules d’or marquées avec du FA. Ensuite, cet essai compétitif colorimétrique en solution fut adapté à une plateforme SPR. Pour les deux essais développés, la sensibilité, sélectivité, limite de détection, l’optimisation de la gamme dynamique et l’analyse du MTX dans les milieux complexes ont été inspectés. De plus, le prototype de la plateforme SPR miniaturisée fut validé par sa performance équivalente aux systèmes SPR existants ainsi que son utilité pour analyser les échantillons cliniques des patients sous chimiothérapie du MTX. Les concentrations de MTX obtenues par le prototype furent comparées avec des techniques standards, soit un essai immunologique basé sur la polarisation en fluorescence (FPIA) et la chromatographie liquide couplée avec de la spectrométrie de masse en tandem (LC-MS/MS) pour valider l’utilité du prototype comme un outil clinique pour les tests rapides de quantification du MTX. En dernier lieu, le déploiement du prototype à un laboratoire de biochimie dans un hôpital démontre l’énorme potentiel des biocapteurs SPR pour utilisation en milieux clinique. / Methotrexate (MTX) cancer therapy requires therapeutic drug monitoring (TDM) for following its levels in a patient during the course of treatment in order to maximize efficacy while minimizing side effects. Despite its narrow therapeutic window, MTX remains until this date, one of the most employed chemotherapy agents. Existing TDM analytical techniques for MTX are costly, time-consuming and labor intensive which are not suitable to promptly generate results within the therapy timeframe. To provide rapid MTX quantification for TDM, a strategy is proposed based on a competitive assay featuring gold nanoparticles and surface plasmonic coupling. More specifically, the inhibition of MTX with its molecular receptor, human dihydrofolate reductase (hDHFR), an enzyme associated with proliferative diseases, is explored. Free MTX mixed with folic acid-functionalized gold nanoparticles (FA-AuNP) are in competition for hDHFR binding sites immobilized on a SPR active surface or free in solution. FA-AuNP binding to hDHFR provides signal amplification which is inversely proportional to the concentration of MTX.
Surface plasmon resonance (SPR) is commonly used as a spectroscopic technique for the interrogation of biomolecular interactions. Current commercial SPR instruments are laboratory-based, bulky, expensive, lack sensitivity in complex matrix and have not shown adaptability in clinical settings. In addition, SPR analysis of small molecules such as drugs has not been extensively explored due to lack of sensitivity. The recent advances in materials science and surface chemistry exploiting gold nanoparticle integration for SPR response enhancement and peptide surface chemistry have shown potential in overcoming the poor sensitivity and surface-fouling limitations for crude biofluids analysis. These novel concepts of SPR technology are incorporated with a miniaturized fully integrated SPR prototype to conduct fast, reliable and sensitive analysis to monitor MTX levels of a patient undergoing chemotherapy. The objective of the thesis is to explore different strategies in improving drug analysis in a complex matrix using SPR biosensors and to put in perspective of the potential of SPR biosensors as a useful TDM tool in clinical laboratories or at a point-of-care situation.
To achieve these objectives, a colorimetric solution-based MTX competitive assay is first established with FA-AuNP. Then, the solution-based MTX competitive assay is translated onto a SPR platform. For both developed assays, sensitivity, selectivity, detection limit, dynamic range optimization as well as analysis of methotrexate in complex matrix are inspected. Furthermore, the SPR prototype is validated by its equivalent performance to existing SPR systems and by its utility in executing MTX analysis in actual serum samples from patients undergoing chemotherapy. The concentrations of MTX obtained by SPR biosensing are compared to standard techniques: fluorescence polarization immunoassay (FPIA) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in order to confirm the feasibility of SPR biosensors as a useful clinical tool for performing rapid MTX concentration evaluation. Finally, the successful deployment of the prototype to a hospital laboratory demonstrates enormous prospective of SPR biosensors in clinical use.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMU.1866/10792
Date10 1900
CreatorsZhao, Sandy Shuo
ContributorsJean-Francois Masson
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.003 seconds