Return to search

Damage evaluation of civil engineering structures under extreme loadings

In many industrial and scientific domains, especially in civil engineering and mechanical engineering fields, materials that can be used on the microstructure scale, are highly heterogeneous by comparison to the nature of mechanical behavior. This feature can make the prediction of the behavior of the structure subjected to various loading types, necessary for sustainable design, difficult enough. The construction of civil engineering structures is regulated all over the world: the standards are more stringent and taken into account, up to a limit state, due to different loadings, for example severe loadings such as impact or earthquake. Behavior models of materials and structures must include the development of these design criteria and thereby become more complex, highly nonlinear. These models are often based on phenomenological approaches, are capable of reproducing the material response to the ultimate level. Stress-strain responses of materials under cyclic loading, for which many researches have been executed in the previous years in order to characterize and model, are defined by different kind of cyclic plasticity properties such as cyclic hardening, ratcheting and relaxation. By using the existing constitutive models, these mentioned responses can be simulated in a reasonable way. However, there may be failure in some simulation for the structural responses and local and global deformation. Inadequacy of these studies can be solved by developing strong constitutive models with the help of the experiments and the knowledge of the principles of working of different inelastic behavior mechanisms together. This dissertation develops a phenomenological constitutive model which is capable of coupling two basic inelastic behavior mechanisms, plasticity and damage by studying the cyclic inelastic features. In either plasticity or damage part, both isotropic and linear kinematic hardening effects are taken into account. The main advantage of the model is the use of independent plasticity versus damage criteria for describing the inelastic mechanisms. Another advantage concerns the numerical implementation of such model provided in hybrid-stress variational framework, resulting with much enhanced accuracy and efficient computation of stress and internal variables in each element. The model is assessed by simulating hysteresis loop shape, cyclic hardening, cyclic relaxation, and finally a series of ratcheting responses under uniaxial loading responses. Overall, this dissertation demonstrates a methodical and systematic development of a constitutive model for simulating a broad set of cycle responses. Several illustrative examples are presented in order to confirm the accuracy and efficiency of the proposed formulation in application to cyclic loading.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00975488
Date07 March 2013
CreatorsAyhan Tezer, Bahar
PublisherÉcole normale supérieure de Cachan - ENS Cachan
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0023 seconds