Covert channels are becoming more popular as security risks grow in networks. One area that is promising for covert channels is wireless networks, since many use a collision avoidance scheme such as carrier sense multiple access with collision avoidance (CSMA/CA). These schemes often introduce randomness in the network, which provides good cover for a covert timing channel. In this thesis, we use the 802.11 standard as an example to demonstrate a wireless covert channel. In particular, most 802.11 configurations use a distributed coordinated function (DCF) to assist in communications. This DCF uses a random backoff to avoid collisions, which provides the cover for our covert channel. Our timing channel provides great improvements on other recent covert channels in the field of throughput, while maintaining high accuracy. We are able to achieve throughput over 8000 bps using Covert DCF, or by accepting a throughput of 1800 bps we can achieve higher covertness and 99% accuracy as well.
Identifer | oai:union.ndltd.org:GEORGIA/oai:digitalarchive.gsu.edu:cs_theses-1070 |
Date | 22 November 2010 |
Creators | Holloway, Russell |
Publisher | Digital Archive @ GSU |
Source Sets | Georgia State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Computer Science Theses |
Page generated in 0.0018 seconds