This thesis deals with a classification of glioma grade in high and low aggressive tumours and overall survival prediction based on magnetic resonance imaging. Data used in this work is from BRATS challenge 2019 and each set contains information from 4 weighting sequences of MRI. Thesis is implemented in PYTHON programming language and Jupyter Notebooks environment. Software PyRadiomics is used for calculation of image features. Goal of this work is to determine best tumour region and weighting sequence for calculation of image features and consequently select set of features that are the best ones for classification of tumour grade and survival prediction. Part of thesis is dedicated to survival prediction using set of statistical tests, specifically Cox regression
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:413113 |
Date | January 2020 |
Creators | Olešová, Kristína |
Contributors | Mézl, Martin, Chmelík, Jiří |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Slovak |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds