Return to search

Deployment Strategies for High Accuracy and Availability Indoor Positioning with 5G

Indoor positioning is desired in many areas for various reasons, such as positioning products in industrial environments, hospital equipment or firefighters inside a building on fire. One even tougher situation where indoor positioning can be useful is locating a specific object on a shelf in a commercial setting. This thesis aims to investigate and design different network deployment strategies in an indoor environment in order to achieve both high position estimation accuracy and availability. The investigation considers the two positioning techniques downlink time difference of arrival, DL-TDOA, and round trip time, RTT. Simulations of several deployments are performed in two standard scenarios which mimic an indoor open office and an indoor factory, respectively. Factors having an impact on the positioning accuracy and availability are found to be deployment geometry, number of base stations, line-of-sight conditions and interference, with the most important being deployment geometry. Two deployment strategies are designed with the goal of optimising the deployment geometry. In order to achieve both high positioning accuracy and availability in a simple, sparsely cluttered environment, the strategy is to deploy the base stations evenly around the edges of the deployment area. In a more problematic, densely cluttered environment the approach somewhat differs. The proposed strategy is now to identify and strategically place some base stations in the most cluttered areas but still place a majority of the base stations around the edges of the deployment area. A robust positioning algorithm is able to handle interference well and to decrease its impact on the positioning accuracy. The cost, in terms of frequency resources, of using more orthogonal signals may not be worth the small improvement in accuracy and availability.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-166431
Date January 2020
CreatorsAhlander, Jesper, Posluk, Maria
PublisherLinköpings universitet, Reglerteknik, Linköpings universitet, Reglerteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds