IN ENGLISH The ischemia-reperfusion (I/R) injury, which is a consequence of myocardial infarction, represents a major cause of death worldwide. One of the most effective cardioprotective interventions increasing the resistance of hearts to the I/R injury is the adaptation to a chronic hypoxia (CH). However, the molecular mechanisms of CH are still not well understood. The most important factors responsible for the I/R injury are reactive oxygen species (ROS) produced by complexes I and III within the mitochondrial electron transport chain. Potential candidates maintaining ROS at a low level are mitochondrial creatine kinase (mtCK) and two hexokinase isoforms (HK1 and HK2). These enzymes highly support the mitochondrial oxidative phosphorylation by increasing the availability of ADP for complex V of the respiratory chain. In addition, the HK binding to mitochondria inhibits binding of the pro- apoptotic protein BAX, thereby protecting cardiac cells against apoptosis. Besides the mitochondrial CK isoform, there are two cytosolic CK (CKM and CKB) present in cardiomyocytes that help to maintain energy homeostasis. Based on the known anatomical and physiological differences between the left (LV) and the right (RV) ventricles, the first study focused on the comparing ventricles in terms of the energy...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:338114 |
Date | January 2014 |
Creators | Wasková, Petra |
Contributors | Žurmanová, Jitka, Drahota, Zdeněk, Nováková, Olga |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds