Return to search

User Modeling and Optimization for Environmental Planning System Design

Indiana University-Purdue University Indianapolis (IUPUI) / Environmental planning is very cumbersome work for environmentalists, government agencies like USDA and NRCS, and farmers. There are a number of conflicts and issues involved in such a decision making process. This research is based on the work to provide a common platform for environmental planning called WRESTORE (Watershed Restoration using Spatio-Temporal Optimization of Resources). We have designed a system that can be used to provide the best management practices for environmental planning. A distributed system was designed to combine high performance computing power of clusters/supercomputers in running various environmental model simulations. The system is designed to be a multi-user system just like a multi-user operating system. A number of stakeholders can log-on and run environmental model simulations simultaneously, seamlessly collaborate, and make collective judgments by visualizing their landscapes. In the research, we identified challenges in running such a system and proposed various solutions. One challenge was the lack of fast optimization algorithm. In our research, several algorithms are utilized such as Genetic Algorithm (GA) and Learning Automaton (LA). However, the criticism is that LA has a slow rate of convergence and that both LA and GA have the problem of getting stuck in local optima. We tried to solve the multi-objective problems using LA in batch mode to make the learning faster and accurate. The problems where the evaluation of the fitness functions for optimization is a bottleneck, like running environmental model simulation, evaluation of a number of such models in parallel can give considerable speed-up. In the multi-objective LA, different weight pair solutions were evaluated independently. We created their parallel versions to make them practically faster in computation. Additionally, we extended the parallelism concept with the batch mode learning. Another challenge we faced was in User Modeling. There are a number of User Modeling techniques available. Selection of the best user modeling technique is a hard problem. In this research, we modeled user's preferences and search criteria using an ANN (Artificial Neural Network). Training an ANN with limited data is not always feasible. There are many situations where a simple modeling technique works better if the learning data set is small. We formulated ways to fine tune the ANN in case of limited data and also introduced the concept of Deep Learning in User Modeling for environmental planning system.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/6114
Date January 2014
CreatorsSingh, Vidya Bhushan
ContributorsMukhopadhyay, Snehasis, Tuceryan, Mihran, Xia, Yuni
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0024 seconds