Return to search

Numerical simulation of weldment creep response

In-service inspections of high temperature pressureequipment show that weldments are prone to creep and fatiguedamage. It is not uncommon that severely damaged weldments arefound even before the design life of the component has beenreached. In order to improve this situation action has beentaken during the last decades, both from industry, universitiesand research institutes, aiming at an enhanced understanding ofthe weldment response. The work presented in this thesis focuses on numericalsimulation of weldment creep response. For a more profoundunderstanding of the evolution of creep damage in mismatchedlow alloy weldments, simulations are performed using thecontinuum damage mechanics, CDM, concept. Both design and lifeassessment aspects are addressed. The possibility to assessseam welded pipes using results from tests of cross-weldspecimens taken out from the seam is investigated. It is foundthat the larger the cross-weld specimen the better thecorrelation. The advantage to use the CDM concept prior to aregular creep analysis is also pointed out. In order to developthe CDM analysis, a modified Kachanov-Rabotnov constitutivemodel is implemented into ABAQUS. Using this model, a secondredistribution of stresses is revealed as the tertiary creepstage is reached in the mismatched weldment. Creep crack growth, CCG, in cross-weld compact tension, CT,specimens is investigated numerically where a fracturemechanics concept is developed in two steps. In the first one,the C*value and an averaged constraint parameter areused for characterising the fields in the process zone, whilein the second step, the creep deformation rate perpendicular tothe crack plane and a constraint parameter ahead of the cracktip, are used as characterising parameters. The influence oftype and degree of mismatch, location of starter notch as wellas size of CT specimen, is investigated. Results show that notonly the material properties of the weldment constituentcontaining the crack, but also the deformation properties ofthe adjacent constituents, influence the CCG behaviour.Furthermore, the effect of size is influenced by the mismatchof the weldment constituents. A circumferentially cracked girth weld with differentmismatch is assessed numerically by use of the fracturemechanics concept developed. The results show that type anddegree of mismatch have a great influence on the CCG behaviourand that C*alone cannot characterise crack tip fields.Corresponding R5 assessments are also performed. Comparisonwith the numerical investigation shows that the assumption ofplane stress or plane strain conditions in the R5 analysis isessential for the agreement of the results. Assuming the formerresults in a relatively good agreement for the axial stressdominated cases while for the hoop stress dominated cases, R5predicts higher CCG rates by an order of magnitude. <b>Keywords:</b>ABAQUS, constraint effect, continuum damagemechanics, creep, creep crack growth, design, design code,finite element method, fracture mechanics, life assessment,mismatch, numerical simulation, weldment

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-3359
Date January 2002
CreatorsSegle, Peter
PublisherKTH, Materialvetenskap, Stockholm : Materialvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationRapport MT, ; 206

Page generated in 0.002 seconds