Return to search

Propagação não linear de pulsos em estruturas 1D com band gap fotônico / Nonlinear pulse propagation in one-dimensional photonic band gap structures

Orientador: Solange Bessa Cavalcanti / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-14T09:40:15Z (GMT). No. of bitstreams: 1
LozadaVera_JohnJairo_M.pdf: 3582168 bytes, checksum: b939d006da96c563046ce0074e25f72e (MD5)
Previous issue date: 2009 / Resumo: Estuda-se a interação entre pulsos ópticos ultracurtos e materiais com band gap fotônico, considerando-se a propagação de luz através de estruturas unidimensionais, compostas de uma super-rede dielétrica periódica cuja célula unitária consiste em um par de camadas com diferentes índices de refração n1e n2, respectivamente. Em particular considera-se o caso em que n2, por exemplo, é um material com não linearidade X (3).
É bem sabido que a largura e a localização dos band gaps dependem fundamentalmente do contraste entre os índices de refração d n = | n1 - n1 | e, atribuindo-se a n2 um índice de refração dependente da intensidade, conseguimos controlar dinamicamente a largura do band gap com o pulso de luz incidente. Portanto, a idéia básica é investigar a dinâmica de propagação nas vizinhanças de um band gap dependente da intensidade para aplicações importantes no projeto de dispositivos fotônicos, como por exemplo limitadores de luz e switches puramente ópticos.
Dentro do formalismo de Maxwell, experimentos computacionais são feitos considerando a propagação de campos ópticos através de super-redes que possuem não linearidades do tipo Kerr, assim como saturável. Esta última é importante para a descrição da interação com pulsos muito intensos já que neste caso a mudança induzida no índice de refração depende de não linearidades de ordem mais alta e, como consequência, alcança uma saturação. Este modelo é apropriado para descrever materiais tais como vidros dopados com semicondutores (e.g. CdS 1-x Sex) polímeros orgânicos, que possuem propriedades ópticas altamente não lineares.
A propagação da onda é resolvida usando uma versão modificada no domínio do tempo do método standard fast Fourier Beam Propagation Method (FFT-BPM) com um passo adaptativo, que pode manejar transmissão, difração e, especialmente, reflexões das ondas electromagnéticas causadas por descontinuidades no índice de refração, com a vantagem de não requerer a introdução de condições de contorno adicionais. / Abstract: The interaction of ultrashort optical pulses with photonic band gap materials has been studied by considering light propagation through one-dimensional photonic band gap structures, composed of a periodic multilayer stack of dielectric materials whose unitary cell consists of a pair of layers with different refractive indices n1and n2, respectively. One of these, say n2, is doped with a X (3)nonlinear material.
It is well known that band gaps widths and locations depend fundamentally on the refractive index contrast d n = | n1 - n1 | and, by assigning to n2 an intensity dependent refractive index, one is bound to dinamically control the band gap width with the incident light pulse. Therefore, the basic idea here is to investigate the dynamics of propagation in the neighborhood of such an intensity-dependent band gap for important applications in the design of all-optical photonic devices such as limiters and switches.
Within the framework of Maxwell's equations, a numerical investigation is made by considering the propagation of optical fields through multilayers with a Kerr, as well as a saturable, type of nonlinearity. The latter is important for the description of the interaction with high field strength pulses because in this case the field-induced change in the refractive index is influenced by higher-order nonlinearities and, as a consequence, this change becomes saturated. This model is appropriate to describe materials such as semiconductor-doped glasses (e.g. CdS 1-x Sex) and organic polymers, which have high nonlinear optical properties.
The wave propagation is solved using a time-domain modified version of the standard fast Fourier Beam Propagation Method (FFT-BPM) with an adaptive step size, which can handle transmission, diÿraction and, especially, reflection of electromagnetic waves caused by discontinuities on the refractive index, with the advantange of not requiring the introduction of additional boundary conditions. / Mestrado / Ótica / Mestre em Física

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/277154
Date14 August 2018
CreatorsLozada Vera, John Jairo
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Cavalcanti, Solange Bessa, Cescato, Lucila Helena Deliesposte, Filho, Carlos Alberto Aragão de Carvalho
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Física Gleb Wataghin, Programa de Pós-Graduação em Física
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format62f. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds