Return to search

Tailoring the mesomorphic structure and crystalline morphology via molecular architecture and specific interactions: from small molecules to long chains

Liquid crystalline materials forming columnar mesophases are of importance for both the fundamental research and technological applications due to their supramolecular architecture allowing for one-dimensional charge transport. The potential applications of these materials include light emitting diodes, solar cells, field effect transistors and photovoltaic cells. However, to design a LC material suitable for a particular application, a fundamental understanding of the structure-property relationships is needed.<p>In the present thesis, a variety of systems forming columnar mesophases have been explored. They include small molecular weight compounds (triphenylene, phthalocyanine derivatives and star-shaped mesogens) and polymer materials. The research was focused on the study of the influence of the molecular architecture and specific interactions such as hydrogen bonding on the supramolecular organization in the mesophase, as well as on the influence of columnar mesophase on crystal growth. The main results of the thesis are summarized below.<p>The influence of hydrogen bonding on the structure and charge carrier mobility was investigated for a triphenylene derivative, hexaazatriphenylene, having lateral alkyl chains linked to the core via amide groups. These linking groups provide the possibility to form inter- and intra-molecular hydrogen bonds. Acting as “clamps”, the inter-molecular hydrogen bonds are found to enforce the attractive interactions between the molecules in the column. Thus, the columnar mesophase formed by this system is characterized by the smallest inter-disk distance ever found in columnar mesophases (3.18 Å). The improved intra-columnar order brings about a higher charge carrier mobility (0.02 cm2/Vs) as compared to other triphenylene derivatives without hydrogen bonds. <p>Phthalocyanine derivatives, which are liquid crystalline at ambient temperature, could be suitable for opto-electronic applications due to their improved processibility and self-healing of structural defects. Our interest in these systems was inspired by the fact that, in spite of numerous studies performed to date, only very a few phthalocyanine derivatives were found to exhibit columnar mesophases at ambient temperature. We observed that by introducing branches in alkyl chains close to the core, we were able to render the material LC at ambient temperature. Analysis of X-ray diffraction patterns measured on oriented samples showed that these systems form hexagonal and rectangular ordered columnar mesophases. This finding is in contradiction with the general view stating that non-hexagonal mesophases can be only disordered. Since the absolute majority of applications require fabrication of films, it was very important to achieve the visualization of the organization of the phthalocyanine derivatives at the nanometer scale. AFM images on thick spin-coated films with columnar resolution are presented for the first time. They allowed the examination of columnar curvatures and breaks at the boundaries between different single crystal-like domains. <p>The possibility of templating columnar crystal growth was studied for a star-shaped mesogen using a combination of direct- and reciprocal-space techniques. AFM images with columnar resolution showed that the crystal growth initiated in the monotropic columnar mesophase occurs almost in register with the mesomorphic template. In the final crystalline structure, the placement of the crystalline columns is controlled by the mesomorphic tracks at the scale of an individual column, i.e. at the scale of approximately 3.5 nm. <p>The mesophase-assisted crystallization was also studied for the case of a polymer material forming columnar mesophase, poly(di-n-propylsiloxane). X-ray diffraction on oriented fibers allowed us to correct the previous indexation and solve the structure of the unit cell. The crystallization process was studied on samples crystallized in different conditions. It was found that, depending on crystallization conditions, both folded-chain and extended-chain crystals can be obtained. Thus, crystallization of the material from the mesophase results in the formation of 100-150nm thick crystals, which corresponds to a nearly extended-chain conformation. By contrast, when crystallized from a dilute solution, folded-chain crystals result. The mechanisms of chain unfolding was studied by variable temperature atomic force microscopy on PDPS single crystals. It was found that crystals rapidly thicken above the initial melting point, up to 80 nm. / Doctorat en sciences, Spécialisation physique / info:eu-repo/semantics/nonPublished

Identiferoai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/211006
Date12 July 2005
CreatorsGearba, Raluca Iona
ContributorsIvanov, Dimitri, Baus, Marc, Masin, Francis, Sferrazza, Michele, Verheulpen Heymans, Nicole, Strobl, Gert, Koch, Michel H. J.
PublisherUniversite Libre de Bruxelles, Université libre de Bruxelles, Faculté des Sciences – Physique, Bruxelles
Source SetsUniversité libre de Bruxelles
LanguageFrench
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation
Format1 v., No full-text files

Page generated in 0.0027 seconds