Pathfinding algorithms used in today&rsquo / s computer games consider path length or a similar criterion as the only measure of optimality. However, these games usually involve opposing parties, whose agents can inflict damage on those of the others&rsquo / . Therefore, the shortest path in such games may not always be the safest one. Consequently, a new suboptimal offline path search algorithm that takes the threat sources into consideration was developed, based on the A* algorithm. Given an upper bound value as the tolerable amount of damage for an agent, this algorithm searches for the shortest path from a starting location to a destination that would cause the agent suffer no more damage than the specified maximum. Due to its mentioned behavior, the algorithm is called Limited-Damage A* (LDA*). Performance of LDA* was tested in randomly-generated and hand-crafted fully-observable maze-like square environments with 8-way grid-abstractions against Multiobjective A* (MOA*), which is a complete and optimal algorithm. It was found to perform much faster than MOA* with allowable sub-optimality in path length.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12609725/index.pdf |
Date | 01 August 2008 |
Creators | Bayili, Serhat |
Contributors | Polat, Faruk |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for METU campus |
Page generated in 0.0095 seconds