Return to search

A sensor fusion method for detection of surface laid land mines

<p>Landminor är ett stort problem både under och efter krigstid. De metoder som används för att detektera minor har inte ändrats mycket sedan 1940-talet. Forskning med mål att utvärdera olika elektro-optiska sensorer och metoder som skulle kunna användas för att skapa mer effektiv min-detektion genomförs på FOI. Försök som har gjorts med data från bland annat laser-radar och IR-sensorer har gett intressanta resultat.</p><p>I det här examensarbetet utvärderades olika fenomen och egenskaper i laser-radar- och IR-data. De testade egenskaperna var intensitet, IR, ytlikhet och höjd.</p><p>En metod som segmenterar intressanta objekt och bakgrundsdata utformades och implementerades. Metoden använde sig av expectation-maximization-skattning och ett minimum message length-kriterium. Ett scatter separability-kriterium användes för att bestämma kvalitén på de olika egenskaperna och på den resulterande segmenteringen.</p><p>Data insamlad under en mätkampanj av FOI användes för att testa metoden. Resultatet visade bland annat att ytlikhetsmåttet gav en bra segmentering för stora objekt med släta ytor, men var sämre för små objekt med skrovliga ytor. Vid jämförelse med en manuellt skapad mål-mask visade det sig att metoden klarade av att välja ut egenskaper som i många fall gav en godkänd segmentering.</p> / <p>Land mines are a huge problem in conflict time and after. Methods used to detect mines have not changed much since the 1940's. Research aiming to evaluate output from different electro-optical sensors and develop methods for more efficient mine detection is performed at FOI. Early experiments with laser radar sensors show promising results, as do analysis of data from infrared sensors.</p><p>In this thesis, an evaluation is made of features found in laser radar- and in infrared -sensor data. The tested features are intensity, infrared, a surfaceness feature extracted from the laser radar data and height above an estimated ground plane.</p><p>A method for segmenting interesting objects from background data using theexpectation-maximization algorithm and a minimum message length criterion is designed and implemented. A scatter separability criterion is utilized to determine the quality of the features and the resulting segmentation.</p><p>The method is tested on real data from a field trial performed by FOI. The results show that the surfaceness feature supports the segmentation of larger object with smooth surfaces but gives no contribution to small object with irregular surfaces. The method produces a decent result of selecting contributing features for different neighbourhoods of a scene. A comparison with a manually created target mask of the neighbourhood and the segmented components show that in most cases a high percentage separation of mine data and background data is possible.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-10479
Date January 2007
CreatorsWestberg, Daniel
PublisherLinköping University, Department of Electrical Engineering, Institutionen för systemteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, text

Page generated in 0.0016 seconds