Le maclage thermique est un défaut cristallographique largement discuté dans les métaux de type CFC à faible énergie de faute d'empilement. Malgré une importante littérature scientifique dédiée à ce sujet, les mécanismes expliquant précisément la formation de ces macles thermiques ne sont pas totalement élucidés à ce jour. Dans ce travail, nous avons cherché à améliorer notre compréhension de ce phénomène fondamental en métallurgie physique. Différents matériaux de type CFC (acier inoxydable 304L, nickel pur et Inconel 718) ont été considérés. Nous avons confirmé, grâce à des expériences de traitement thermique in situ couplées à des cartographies d'orientation, que la majorité des macles thermiques sont générées durant la recristallisation. De la même manière, par une expérience réalisée sur l'Inconel 718, nous avons mis en évidence que la croissance de grains pure n'était pas source de joints de macle. Par conséquent, il semble évident que les phénomènes de recristallisation et de croissance de grains ont des régimes totalement distincts associés à des mécanismes spécifiques du point de vue de la formation des macles thermiques, et doivent donc absolument être étudiés séparément. Nous avons ainsi proposé un nouveau modèle, dans lequel l'effet du signe de la courbure moyenne du front de recristallisation est pris en compte. Les influences de différents facteurs thermomécaniques, y compris le niveau de déformation, la taille de grains initiale, la température de recuit et la vitesse de montée en température, ont été étudiées à travers deux séries d'expériences. Suite à l'effet du signe de la courbure moyenne du joint de grain, nous avons proposé une méthode pour quantifier la tortuosité du front de recristallisation. Dans cette étude, nous montrons que cette quantité est corrélée à la densité de macles post-recristallisation. En sus des analyses expérimentales, des outils numériques de type champ moyen et champ complet ont également été développés dans cette étude afin de modéliser l'évolution des macles thermiques tout en tenant en compte des mécanismes physiques mis en évidence expérimentalement. Les bases d'un nouveau modèle de type champ moyen ont été proposées afin de modéliser l'évolution de la densité de macles moyenne durant le phénomène de croissance de grains. Ce modèle, dans lequel seulement un paramètre doit être identifié par des donnés expérimentales, semble mieux décrire les résultats expérimentaux obtenus pour l'inconel 718 comparé au modèle de Pande, référence en la matière. Deux méthodes implicites i.e. la méthode level-set et la méthode champ de phase ont été comparées au niveau de leurs formulations et de leurs performances numériques pour des simulations de croissance de grains anisotrope. C'est la première fois que ces deux méthodes sont comparées dans le contexte de l'utilisation de maillages éléments finis non stucturés et hétérogènes en terme de taille de maille. Une nouvelle méthodologie a été ainsi proposée dans le cadre de l'approche level-set pour simuler l'évolution de macles thermiques durant le phénomène de croissance de grains. Dans cette nouvelle méthodologie, les joints de macles peuvent être insérés dans des microstructures synthétiques. De plus, les joints de macles peuvent être distingués selon leur nature cohérente ou incohérente. Nous avons montré à travers les différentes simulations réalisées que les propriétés spéciales des joints de macles peuvent être prises en compte avec ce nouveau formalisme. / Annealing twin is a crystallographic defect that is largely reported in F.C.C. metals especially those with low stacking fault energy. Despite the amount of work dedicated to the subject, the understanding of annealing twin formation mechansims is not complete in the literature. In the present work, by applying both experimental and numerical tools, we tried to have a more profound understanding of this phenomenon, which is essential to Physical Metallurgy. For this purpose, different F.C.C. Materials including 304L stainless steel, commercially pure nickel and nickel based superalloy Inconel 718 are investigated. We confirmed that annealing twins are mainly formed in the recrystallization regime, especially driven by the migration of recrystallization front into deformed regions by using in situ EBSD technique. In addition, we found in the in situ observations that there are almost no twins generated in the grain growth regime. This observation is confirmed by another grain growth experiment performed on Inconel 718. Therefore, curvature driven grain boundary migration by itself is not sufficient to generate annealing twins. A new atomistic model to explain annealing twin formation mechanism, in which the effect of migrating boundary curvature is considered, is proposed. The effects of different thermo-mechanical factors, including prior deformation level, initial grain size, annealing temperature and the heating velocity, on annealing twin formation are determined via two experiments performed on commercially pure nickel. Based on the idea of grain boundary curvature, we proposed a method to quantify recrsytallization front tortuosity. In the present study, we show evidence that this quantity is positively correlated with the twin density at the end of the recrystallization regime. In addition to experimental studies, numerical tools including both mean field and full field approaches are applied to model annealing twin evolution during grain growth by taking into account the revealed mechanisms. A basis of a new mean field model is proposed to model annealing twin density evolution during grain growth. This model, which has only one parameter to be identified, provides a better consistency with the experimental data of Inconel 718 compared to the Pande's model. Besides, full field approaches are also applied to simulate the overall microstructure evolution during grain growth. Two implicit methods i.e. the level set and the multi-phase-field methods are compared in terms of their formulations and their numerical performance in anisotropic grain growth simulations. It is the first time that these two methods are compared in the finite element context with non-structural mesh. In the present numerical context, the level set method is more suitable to describe strong anisotropy in grain boundary energy. A new methodology is thus developed in the level set framework to simulate annealing twin evolution during grain growth. This methodology, in which we can insert annealing twin boundaries into synthetic microstructures and distinguish coherent and incoherent twin boundaries, is proven to be able to counting for the strong anisotropy introduced by coherent annealing twin boundaries.
Identifer | oai:union.ndltd.org:theses.fr/2014ENMP0030 |
Date | 10 December 2014 |
Creators | Jin, Yuan |
Contributors | Paris, ENMP, Carnegie-Mellon university (Pittsburgh, Pa.), Bozzolo, Nathalie, Rollett, Anthony |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.003 seconds