Return to search

Modeling cross-classified data with and without the crossed factors' random effects' interaction

The present study investigated estimation of the variance of the cross-classified factors’ random effects’ interaction for cross-classified data structures. Results for two different three-level cross-classified random effects model (CCREM) were compared: Model 1 included the estimation of this variance component and Model 2 assumed the value of this variance component was zero and did not estimate it. The second model is the model most commonly assumed by researchers utilizing a CCREM to estimate cross-classified data structures. These two models were first applied to a real world data set. Parameter estimates for both estimating models were compared. The results for this analysis served as a guide to provide generating parameter values for the Monte Carlo simulation that followed. The Monte Carlo simulation was conducted to compare the two estimating models under several manipulated conditions and assess their impact on parameter recovery. The manipulated conditions included: classroom sample size, the structure of the cross-classification, the intra-unit correlation coefficient (IUCC), and the cross-classified factors’ variance component values. Relative parameter and standard error bias were calculated for fixed effect coefficient estimates, random effects’ variance components, and the associated standard errors for both. When Model 1 was used to estimate the simulated data, no substantial bias was found for any of the parameter estimates or their associated standard errors. Further, no substantial bias was found for conditions with the smallest average within-cell sample size (4 students). When Model 2 was used to estimate the simulated data, substantial bias occurred for the level-1 and level-2 variance components. Several of the manipulated conditions in the study impacted the magnitude of the bias for these variance estimates. Given that level-1 and level-2 variance components can often be used to inform researchers’ decisions about factors of interest, like classroom effects, assessment of possible bias in these estimates is important. The results are discussed, followed by implications and recommendations for applied researchers who are using a CCREM to estimate cross-classified data structures. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/31010
Date08 September 2015
CreatorsWallace, Myriam Lopez
ContributorsBeretvas, Susan Natasha
Source SetsUniversity of Texas
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0017 seconds