Return to search

Human Rad51: Regulation of Cellular Localization and Function in Response to DNA Damage: A Dissertation

Repair of DNA double-strand breaks via homologous recombination is an essential pathway for vertebrate cell development and maintenance of genome integrity throughout the organism’s lifetime. The Rad51 enzyme provides the central catalytic function of homologous recombination while many other proteins are involved in regulation and assistance of Rad51 activity, including a group of five proteins referred to as Rad51 paralogs (Rad51B, Rad51C, Rad51D, Xrcc2, Xrcc3). At the start of my work, cellular studies of human Rad51 (HsRad51) had shown only that it forms distinct nuclear foci in response to DNA damage. Additionally, no information regarding the cellular localization, potential DNA damage-induced redistribution or cellular functions for any of the Rad51 paralog proteins was available. Therefore, the goals of this work were to (1) present a more complete description of the cellular localization and DNA damage-induced redistribution of Rad51 and the two paralog proteins known to specifically associate with Rad51, Rad51C and Xrcc3, and (2) to define specific functional roles for Rad51C and Xrcc3 in mediating Rad51 activity. I focused on the use of cellular, RNAi and immunofluorescence methods to study endogenous Rad51, Rad51C and Xrcc3 in human cells.
In my initial studies we showed for the first time that Xrcc3 forms distinct foci in both the nucleus and cytoplasm independent of DNA damage, that the distribution of these foci did not change significantly throughout the time course of DNA damage and repair, and that Xrcc3 focus formation is independent of Rad51. Additionally, and unlike most previously published images of nuclear Rad51, we found that the majority of DNA damage-induced nuclear Rad51 foci do not colocalize with gamma H2AX, a histone marker used to indicate the occurrence of DNA double strand breaks.
As a consequence of these initial outcomes, a significant amount of effort was devoted to developing and optimizing immunofluorescence methods. Importantly, we developed a purification method for commercially available monoclonal antibodies against Rad51C and Xrcc3 that significantly improved their reactivity and specificity. My next study concentrated on Rad51C. Similar to Xrcc3, we found for the first time that Rad51C forms distinct nuclear and cytoplasmic foci independent of DNA damage and Rad51. An additional and surprising outcome was our discovery that Rad51C plays an important role in regulating the ubiquitination and proteasome-mediated degradation of Rad51. While biochemical functions for Rad51 paralog proteins had been suggested in the literature, this was the first demonstration of a specific biochemical function for Rad51C that contributes directly to the Rad51 activity in the homologous recombination pathway. Our improved immunofluorescence methods allowed us to see the accumulation of Rad51, Rad51C and Xrcc3 at the nuclear periphery early in response to DNA damage, suggesting the existence of a DNA damage-dependent trafficking mechanism that promoted movement of these proteins from the cytoplasm to the nucleus. This led to further studies in which we show distinct co-localization of cytoplasmic Rad51 with actin as well as alpha and beta tubulin. Using both immunofluorescence and sub-cellular fractionation methods our recent results strongly suggest that trafficking of Rad51 to the nucleus in response to DNA damage is regulated at least in part by its association with cytoskeletal proteins, and involves movement of both existing pools of Rad51 and newly synthesized protein.
In a particularly exciting development, in collaboration with Leica Microsystems and Dr. Joerg Bewersdorf at The Jackson Laboratory, Bar Harbor, ME., I have been able to exploit a new technology, 4Pi microscopy, to provide the first images of endogenous nuclear proteins using this method.
Results presented in this thesis have added significantly to a more complete understanding of cellular localization Rad51, Rad51C and Xrcc3, and have provided important insights into possible mechanisms of cellular trafficking of Rad51 in response to response to DNA damage. Additionally, we have defined a specific function for Rad51C in its regulation of Rad51 ubiquitination. These findings open several new avenues of investigation for furthering our understanding of the cellular and molecular functions of proteins with critical roles in the maintenance of genome integrity in human cells.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1224
Date07 February 2006
CreatorsBennett, Brian Thomas
PublishereScholarship@UMassChan
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMorningside Graduate School of Biomedical Sciences Dissertations and Theses
RightsCopyright is held by the author, with all rights reserved., select

Page generated in 0.0029 seconds