Crown volume is defined as the geometric space occupied by the crown. Crown volume and the change (growth) of crown volume over time can be an important part of multi-temporal forest analyses but is expensive and time consuming to obtain through conventional forest survey methods for large, remote areas. LiDAR-derived crown volume growth was compared to an expected amount of crown volume growth for 220 Douglasir trees in the Panther Creek, Oregon watershed. A paired t-test between expected crown volume growth and the LiDAR-derived crown volume growth resulted in a p-value of 0.85. Regression procedures between expected crown volume and LiDAR-derived crown volume in 2008 and 2012 resulted in R2 values of 0.45 and 0.53, respectively. LiDAR measured change in crown volume over time was not significantly different than the expected amount of change. With further research, multi-temporal LiDAR could become a viable tool for forest analyses.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4039 |
Date | 17 August 2013 |
Creators | Frew, Michael S |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0016 seconds