Return to search

Evaluation of Adapted Passenger Cars for Drivers with Physical Disabilities

Driving can provide independent and efficient mobility. However, according to the driving license directive (91/439/EEC) are persons with locomotor impairments are only allowed drive if their disabilities can be compensated. Compensation can be realised by vehicle adaptations. The directive provides meagre guidance on how vehicles should be adapted or how to verify that the compensatory requirements are fulfilled. This is a gap in the current process for licensing drivers with physical disabilities. Furthermore, the Swedish process from driver assessment to driver licensing and adaptation approval is complex, fragmented, and suffer from lack of communication between involved authorities. The objective of this thesis was to contribute to the development of a method to evaluate vehicle adaptations for driver with physical disabilities. The focus was on the evaluation of adaptations for steering, accelerating and braking. Three driving simulator experiments and one manoeuvre test with adapted vehicles were conducted. A group of drivers with tetraplegia driving with hand controls were compared to able-bodied drivers in the first experiment. Even if the drivers with tetraplegia had a longer brake reaction time they performed comparable to the able-bodied drivers. However, they spent more effort and were more tired in order to perform as well as the able-bodied drivers. It was concluded that the adaptation was not sufficient. An Adaptive Cruise Controller (ACC) was tested in the second experiment in order to find out if it could alleviate the load on drivers using hand controls. It was found that the ACC decreased the workload on the drivers. However, ACC systems need to be adjustable and better integrated. The results from the first two experiments were used to provide some guidelines for ACCsystems to be used by drivers with disabilities. The third experiment was preceded by a manoeuvre test with joystick controlled cars. The test revealed some problems, which were attributed to time lags, control interference, and lack of feedback. Four joystick designs were tested with a group of drivers with tetraplegia in the third experiment. It was concluded that time lags should be made similar to what is found in standard cars. Lateral and longitudinal control should be separated. Active feedback can improve vehicle control but should be individually adjusted. The experiments revealed that drivers with the same diagnose can be functionally very diverse. Thus, an adaptation evaluation should be made individually. Furthermore, the evaluation should include a manoeuvre test. Finally, it was concluded that the evaluation approach applied in the experiments was relevant but needs to be further developed.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:vti-7838
Date January 2004
CreatorsPeters, Björn
PublisherStatens väg- och transportforskningsinstitut, Linköping
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology, 0345-7524 ; 864

Page generated in 0.0022 seconds