Fiber based ultrashort pulse laser sources are desirable for many applications; however generating high peak powers in fiber lasers is primarily limited by the onset of nonlinear effects such as self-phase modulation, stimulated Raman scattering, and self-focusing. Increasing the fiber core diameter mitigates the onset of these nonlinear effects, but also allows unwanted higher-order transverse spatial modes to propagate. Both large core diameters and single-mode propagation can be simultaneously attained using photonic crystal fibers. Thulium-doped fiber lasers are attractive for high peak power ultrashort pulse systems. They offer a broad gain bandwidth, capable of amplifying sub-100 femtosecond pulses. The longer center wavelength at 2 ?m theoretically enables higher peak powers relative to 1 [micro]m systems since nonlinear effects inversely scale with wavelength. Also, the 2 [micro]m emission is desirable to support applications reaching further into the mid-IR. This work evaluates the performance of a novel all-fiber pump combiner that incorporates a thulium-doped photonic crystal fiber. This fully integrated amplifier is characterized and possesses a large gain bandwidth, essentially single-mode propagation, and high degree of polarization. This innovative all-fiber, thulium-doped photonic crystal fiber amplifier has great potential for enabling high peak powers in 2 [micro]m fiber systems; however the current optical-to-optical efficiency is low relative to similar free-space amplifiers. Further development and device optimization will lead to higher efficiencies and improved performance.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-5653 |
Date | 01 January 2014 |
Creators | Sincore, Alex |
Publisher | University of Central Florida |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0026 seconds