Return to search

Tectonique moléculaire : vers l'utilisation du dispirofluorène-indénofluorène comme unité de construction pour bâtir des réseaux cristallins poreux

La chimie supramoléculaire est un domaine qui suscite depuis quelques années un intérêt grandissant. Le domaine s’appuie sur les interactions intermoléculaires de façon à contrôler l’organisation moléculaire et ainsi moduler les propriétés des matériaux. La sélection et le positionnement adéquat de groupes fonctionnels, utilisés en combinaison avec un squelette moléculaire particulier, permet d’anticiper la façon dont une molécule interagira avec les molécules avoisinantes. Cette stratégie de construction, nommé tectonique moléculaire, fait appel à la conception de molécules appelées tectons (du mot grec signifiant bâtisseur) pouvant s’orienter de façon prévisible par le biais d’interactions faibles et ainsi générer des architectures supramoléculaires inédites. Les tectons utilisent les forces intermoléculaires mises à leur disposition pour s’orienter de façon prédéterminée et ainsi contrecarrer la tendance à s’empiler de la manière la plus compacte possible. Pour ce faire, les tectons sont munies de diverses groupes fonctionnels, aussi appelés groupes de reconnaissance, qui agiront comme guide lors de l’assemblage moléculaire. Le choix du squelette moléculaire du tecton revêt une importance capitale puisqu’il doit permettre une orientation optimale des groupes de reconnaissance.

La stratégie de la tectonique moléculaire, utilisée conjointement avec la cristallisation, ouvre la porte à un domaine de la chimie supramoléculaire appelé le génie cristallin. Le génie cristallin permet l’obtention de réseaux cristallins poreux soutenus par des interactions faibles, pouvant accueillir des molécules invitées. Bien que toutes les interactions faibles peuvent être mises à contribution, le pont hydrogène est l’interaction prédominante en ce qui a trait aux réseaux cristallins supramoléculaires. La force, la directionnalité ainsi que la versatilité font du pont hydrogène l’interaction qui, à ce jour, a eu le plus grand impact dans le domaine du génie cristallin.

Un des groupements de reconnaissance particulièrement intéressants en génie cristallin, faisant appel aux ponts hydrogène et offrant plusieurs motifs d’interaction, est l’unité 2,4-diamino-1,3,5-triazinyle. L’utilisation de ce groupement de reconnaissance conjointement avec un cœur moléculaire en forme de croix d’Onsager, qui défavorise l’empilement compact, permet l’obtention de valeurs de porosités élevées, comme c’est le cas pour le 2,2’,7,7’-tétrakis(2,4-diamino-1,3,5-triazin-6-yl)-9,9’-spirobi[9H-fluorène].

Nous présentons ici une extension du travail effectué sur les cœurs spirobifluorényles en décrivant la synthèse et l’analyse structurale de molécules avec une unité dispirofluorène-indénofluorényle comme cœur moléculaire. Ce cœur moléculaire exhibe les mêmes caractéristiques structurales que le spirobifluorène, soit une topologie rigide en forme de croix d’Onsager défavorisant l’empilement compact. Nous avons combiné les cœurs dispirofluorène-indénofluorényles avec différents groupements de reconnaissance de façon à étudier l’influence de l’élongation du cœur moléculaire sur le réseau cristallin, en particulier sur le volume accessible aux molécules invitées. / Supramolecular chemistry is a field of rapidly increasing interest in recent years. The field uses weak intermolecular interactions to control molecular organisation and therefore modulate the properties of materials. Adequate selection and positioning of functional groups, combined with a carefully selected molecular core to which the groups are attached, allows for the creation of molecules with a high degree of predictability in the way they will interact with their neighbours. This approach to the design and construction of materials, called molecular tectonics, is based on subunits called tectons (derived from the Greek word for builder), which use weak interactions to organise themselves in a predictable manner and generate novel supramolecular architectures. In favorable cases, the interactions can counter the general tendency shown by molecules to pack together in a compact manner. Instead, specific functional groups direct molecular recognition and help guide the process of auto-assembly. At the same time, the molecular core of the tecton is also of capital importance as it must allow an optimal orientation of the recognition groups.
The molecular tectonics approach, used jointly with crystallisation, opens the door to new opportunities in crystal engineering. For example, crystal engineering now allows the logical creation of porous crystalline networks that can accept guest molecules. Although any type of weak interaction can hold such networks together, the hydrogen bond is favored for constructing porous supramolecular networks. The strength, directionality and versatility of the hydrogen bond accounts for its special importance in the domain of crystal engineering.

A recognition group of particular interest in crystal engineering is the 2,4-diamino-1,3,5-triazinyl unit. This unit forms hydrogen bonds according to various standard motifs. The use of this recognition group, joined to molecular cores specifically designed to inhibit close packing, such as Onsager crosses, allows for the construction of supramolecular networks with high porosity, as shown by the behaviour of 2,2’,7,7’-tetrakis(2,4-diamino-1,3,5-triazin-6-yl)-9,9’-spirobi[9H-fluorene].

We present here an extension of previous studies of spirobifluorenyl cores by describing the synthesis and structural analysis of molecules with related dispirofluorene-indenofluorenyl cores. This new core offers the same characteristics as the spirobifluorenyl core, namely rigid topology and an Onsager cross molecular shape which are known to inhibit close packing. We have combined this core with a variety of recognition groups to verify the influence of the molecular core on the crystalline networks generated, particularly on the volume accessible to guest molecules.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMU.1866/9817
Date01 1900
CreatorsBlair-Pereira, Joao-Nicolas
ContributorsWuest, James D.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.003 seconds