Return to search

Computational modeling of a liquid crystal phase transition

This thesis numerically solves the tensor order parameter continuum theory equations for nematic liquid crystals to investigate liquid crystal texturing mechanisms during an isotropic to nematic phase transition in a bulk unstable isotropic phase and next to solid surfaces. The Time Dependent Ginsburg Landau equation with a Landau de Gennes Helmholtz free energy density description is used to predict the shapes, textures and defect mechanisms that occur in the expanding droplets and films of a 4'-pentyl-4-cyanobiphenyl (5CB) nematic phase immediately after their nucleation from an unstable isotropic phase, due to a temperature quench. To create a robust simulation method able to tackle high curvature, defect nucleation, heterogeneous substrates and phase ordering interfaces, particular attention was paid to adapting the mathematical model and computational methods to what was previously known about the nucleation and growth events that occur experimentally during a bulk 5CB isotropic to nematic phase transition and next to decorated solid surfaces. The numerical simulations provide detailed predictions about (i) growth rates for different temperature quenches, (ii) structure of the isotropic-nematic interface, (iii) shapes of expanding nano and submicron nematic droplets, (iv) texturing within growing nano and submicron nematic droplets, (v) a new defect formation mechanism called "interfacial defect shedding", and (vi) the effect of contact angle and interface curvature next to a solid surface with anchoring switches. The main contributions of this thesis are its detailed predictions that emerge from the liquid crystal simulation results, the careful adaptation of the mathematical model and numerical method to what is currently known about early stage growth in a nematic liquid crystal phase, and the validation of new theory by the simulation results.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.103308
Date January 2007
CreatorsWincure, Benjamin, 1966-
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Chemical Engineering.)
Rights© Benjamin Wincure, 2007
Relationalephsysno: 002666573, proquestno: AAINR38662, Theses scanned by UMI/ProQuest.

Page generated in 0.0018 seconds