Dans cette thèse, la croissance des couches minces de Cu(In,Ga)Se2 (CIGS) a été optimisée et étudiée systématiquement. Une étude de calibration de la température du substrat à l'aide d'une caméra infrarouge a été effectuée. La mise au point et l'optimisation d'un procédé en 3 étapes sur un nouveau réacteur de co-évaporation a permis la réalisation de cellules solaires avec un rendement de 16,7 % sans couche antireflet. La clé de ce développement a été le contrôle du gradient de Ga. Les inhomogénéités ont été caractérisées par une nouvelle approche basée sur le décapage chimique de l'absorbeur. Des caractérisations ex situ à différentes étapes de la croissance ont révélé l'importance des phases intermédiaires sur les mécanismes de croissance, le gradient de composition en profondeur et la morphologie des couches. L'interface absorbeur/couche tampon a été étudiée en variant la composition en surface du CIGS pour des couches tampons de CdS et Zn(S,O). Il a été montré qu'une adaptation de la composition en surface est favorable pour le remplacement de la couche tampon de CdS par Zn(S,O). Des rendements équivalents ont été obtenus pour ces deux matériaux si ils sont combinés avec la composition da Ga optimale correspondante. Des mesures courant-tension à basse température indiquent une position de la bande de condition plus basse que celle trouvée dans la littérature. Pour une optimisation ultérieure de nos cellules solaires vers et au-delà de 20 % de rendement, trois axes sont proposées : L'optimisation de la finalisation de l'absorbeur, la réduction de l'absorption par la couche tampon et l'incorporation de potassium ayant des effets positifs sur les propriétés du CIGS. / In this thesis the growth of Cu(In,Ga)Se2 (CIGS) thin films by co-evaporation has been optimised and studied systematically. Being a key parameter, the substrate temperature has been calibrated with an infrared camera. The set-up and optimisation of a three-stage process at a new co-evaporation reactor has led to cell efficiencies up to 16.7 % without anti-reflection coating. The key for this achievement was the control of the Ga gradient. In depth inhomogeneities have been characterised by a novel method based on chemical etching of the absorber layer. Break-off experiments during the 3-stage process unveiled the importance of precursor and intermediate phases on growth mechanisms, in-depth compositional gradients and film morphology. The absorber/buffer layer interface has been investigated by varying the CIGS surface composition for solar cells both with a CdS and a Zn(O,S)-based buffer layer. It has been shown that an adaptation of the CIGS surface composition is beneficial for the replacement of the CdS by a Zn(O,S) buffer layer. Equivalent efficiencies can be achieved with the two buffer layers if each of them is combined with the corresponding optimal interface Ga composition. Low temperature current-voltage measurements indicate a lower conduction band offset at the CIGS/Zn(O,S) buffer layer as reported in the literature. For the further optimisation of our CIGS devices towards 20 % and beyond three routes are proposed: the optimisation of the absorber layer deposition finalisation, the reduction of detrimental absorption in the buffer layer (larger band gap or thinner buffer) and the incorporation of potassium which has beneficial effects on CIGS.
Identifer | oai:union.ndltd.org:theses.fr/2015PA066008 |
Date | 08 January 2015 |
Creators | Klinkert, Torben |
Contributors | Paris 6, Guillemoles, Jean-François |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds