This thesis aims to produce a novel multi-objective algorithm that is based on Cuckoo Search by Dr. Xin-She Yang. Cuckoo Search is a promising nature-inspired meta-heuristic optimization algorithm, which currently is only able to solve single-objective optimization problems. After an introduction, a number of theoretical points are presented as a basis for the decision of which algorithms to hybridize Cuckoo Search with. These are then reviewed in detail and verified against current benchmark algorithms to evaluate their efficiency. To test the proposed algorithm in a new setting, a real-world combinatorial problem is used. The proposed algorithm is then used as an optimization engine for a simulation-based system and compared against a current implementation.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:his-5309 |
Date | January 2011 |
Creators | Lidberg, Simon |
Publisher | Högskolan i Skövde, Institutionen för teknik och samhälle |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds