Return to search

Magnetization dynamics in paramagnetic systems

Abstract

This thesis reports simulations of direct observables in electron and nuclear spin relaxation experiments in an example paramagnetic system, as well as polarization transfer occurring in a spin-exchange optical pumping (SEOP) experiment. Studies of paramagnetic relaxation are important, e.g., in the development of agents used for enhanced contrast in magnetic resonance imaging. SEOP is used to produce hyperpolarized noble gases, which are then used to, e.g., enhance sensitivity in structural studies of matter with nuclear magnetic resonance. Presently the theory, available software and hardware for such computational modeling have reached a state in which quantitative reproduction of the experimentally observed magnetization decay is possible from first principles.

The present multiscale computations are carried out from first principles combining molecular dynamics simulations of atomistic motion and quantum-chemical electronic structure calculations of the spin interaction parameters that enter the effective spin Hamiltonian. A time series of the spin Hamiltonian is then explicitly used to propagate spin dynamics in the system, and dynamical time constants of the magnetization are obtained through ensemble averaging. The complete decay of electron spin magnetization could be followed directly within the duration of the simulation, whereas the nuclear spin relaxation rates were extracted using Kubo’s theory regarding generalized cumulant expansion and stochastic processes.

The extracted electron and nuclear spin relaxation rates for the chosen prototypic system, the aqueous solution of Ni²⁺, are in quantitative and semi-quantitative agreement, respectively, with the available experimental results. The simulations of polarization transfer corroborate the empirical observations on the importance of van der Waals complexes and binary collisions in the spin-exchange process. Long van der Waals complexes represent the overwhelmingly most significant kind of individual events, but the short binary collisions can also give a relatively important contribution due to their vast abundance. This thesis represents a first study in which first principles-calculated trajectories of individual events could be followed.

The simulations reported in this thesis were run without any empirical parametrization and thus represent a significant step in first-principles computational modeling of magnetization dynamics.

Identiferoai:union.ndltd.org:oulo.fi/oai:oulu.fi:isbn978-952-62-2120-5
Date07 December 2018
CreatorsRantaharju, J. (Jyrki)
PublisherOulun yliopisto
Source SetsUniversity of Oulu
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess, © University of Oulu, 2018
Relationinfo:eu-repo/semantics/altIdentifier/pissn/1239-4327

Page generated in 0.0024 seconds