This work focuses on the solar cell based on the heterostructure formed between Copper Phthalocyanine (CuPc) and Cadmium Sulfide (CdS). Two different fabrication techniques were used for depositing the organic and inorganic layers of CuPc and CdS layers respectively. CuPc was deposited by electrodeposition while CdS was deposited by chemical bath deposition. Hybrid CdS/CuPc thin films were obtained from CdS films grown on Glass/ITO by chemical bath deposition followed by electrodeposition of CuPc onto these films and annealing at 250˚C after the deposition of each layer. The maximum open circuit voltage (Voc) and the short circuit current density (Jsc) obtained for this heterojunction solar cell are 0.59v and 0.7mA/cm2 respectively and these are the highest values achieved in literature till date. The materials characteristics and electrical performances of the device were analyzed. The effect of increasing the thickness of CuPc and CdS on the short circuit current density and open circuit voltage were also investigated.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_theses-1561 |
Date | 01 January 2008 |
Creators | Marda, Sandeep Kumar |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Master's Theses |
Page generated in 0.0056 seconds