This thesis includes three stages of experiments. The goal of the thesis was to prepare nanoparticle-encapsulated curcumin for the purpose of drug delivery. The first step was the nanoparticle preparation. The self-assembly of block copolymer (poly(ε- caprolactone)-b-poly(ethylene oxide)) and curcumin was conducted on a gas-liquid two phase microfluidic reactor. During preparation, various chemical parameters and flow rates were tested. The nanoparticles showed flow variability; the size decreased and the loading efficiency increased with increased flow rates. Increasing the water content and drug-to-polymer loading ratio also proved to increase loading efficiency and decrease the size of the nanoparticles. The release profiles, however, showed fast release rates under various preparation conditions, with a nearly complete release after ~5 h. In the next stage of the research, we considered release optimization in preparation for future pharmacokinetic studies. Increasing the flow rate had a greater influence on slowing down release rates than changing other parameters, such as decreasing the drug-to- polymer loading ratio or increasing the water content. A procedure to extract and quantify curcumin from mouse blood was also developed in this stage. In the final stage of the research, nanoparticle-encapsulated curcumin was tested on a human breast cancer cell line, MDA-MB-231. The result showed that the nanoparticle formulation had a growth inhibition effect on MDA-MB-231, although the cytotoxicity was compromised by encapsulation in the nanoparticles. / Graduate / 2019-01-13
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/7841 |
Date | 09 March 2017 |
Creators | Chen, Ruyao |
Contributors | Moffitt, Matthew |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | Available to the World Wide Web |
Page generated in 0.002 seconds