Oscillators are components providing clock signals. They are widely required by low-cost on-chip applications, such as biometric sensors and SoCs. As part of a sensor, a relaxation oscillator is implemented to provide a clock reference. Limited by the sensor application, a clock reference outside the sensor is not desired. An RC implementation of the oscillator has a balanced accuracy performance with low-cost advantage. Hence an RC relaxation oscillator is chosen to provide the clock inside the sensor. This thesis proposes a current mode relaxation oscillator to achieve low frequency standard deviation across different supplies, temperatures and process corners. A comparison between a given relaxation oscillator and the proposed design is made as well. All oscillators in this thesis use 0.18 μm technology and 1.8 V nominal supply. The proposed oscillator manages to achieve a frequency standard deviation across all PVT variations less than ±6.5% at 78.4 MHz output frequency with a power dissipation of 461.2 μW. The layout of the oscillator's core area takes up 0.003 mm2.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-138423 |
Date | January 2017 |
Creators | Dai, Jianxing |
Publisher | Linköpings universitet, Elektroniska Kretsar och System |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0012 seconds