Return to search

A 280 mW, 0.07 % THD+N Class-D Audio Amplifier Using a Frequency-Domain Quantizer

abstract: Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented in this paper. The digital-intensive frequency domain approach achieves high linearity under low-supply regimes. An analog comparator and a single-bit quantizer are replaced with a Current-Controlled Oscillator- (ICO-) based frequency discriminator. By using the ICO as a phase integrator, a third-order noise shaping is achieved using only two analog integrators. A single-loop, singlebit class-D audio amplifier is presented with an H-bridge switching power stage, which is designed and fabricated on a 0.18 um CMOS process, with 6 layers of metal achieving a total harmonic distortion plus noise (THD+N) of 0.065% and a peak power efficiency of 80% while driving a 4-ohms loudspeaker load. The amplifier can deliver the output power of 280 mW. / Dissertation/Thesis / Ph.D. Electrical Engineering 2011

Identiferoai:union.ndltd.org:asu.edu/item:9517
Date January 2011
ContributorsLee, Junghan (Author), Bakkaloglu, Bertan (Advisor), Kiaei, Sayfe (Committee member), Ozev, Sule (Committee member), Song, Hongjiang (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format119 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0019 seconds