This diploma thesis deals with design of reconection-less electronically reconfigurable filter structures which have single input and single output using unconventional active elements, which have ability to adjust one of their parameter e.g. gain or transconductance. The first part describes basic parameters of frequency filters, the division of filters by frequency transfer response and used circuit elements, their operational modes, the principle of reconnection-less electronically reconfiguration and the circuit design method MUNV. Second part describes all active elements used in the proposal of filters, their properties and the implementation using existing transistor-level models. The third part contains the design of three reconnection-less electronically reconfigurable filters and the simulations results obtained from simulation programs OrCAD Capture and PSpice. The obtained results were compared with theoretical behaviour. This part also contains results of these analyses: sensitivity, parasitic, Monte Carlo and temperature to determine the behaviour in varied cases.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:413078 |
Date | January 2020 |
Creators | Michalička, Filip |
Contributors | Dvořák, Jan, Langhammer, Lukáš |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Slovak |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.015 seconds